
Solutions: Problem Set 5
Math 201A, Fall 2006

1. Suppose that (xn) is a bounded sequence of real numbers. Define a
sequence (yn) by

yn =
x1 + x2 + . . . + xn

n
.

(a) Prove that

lim inf
n→∞

xn ≤ lim inf
n→∞

yn ≤ lim sup
n→∞

yn ≤ lim sup
n→∞

xn.

(b) If (xn) converges, must (yn) converge? If (yn) converges, must (xn)
converge? Prove your answers.

Solution.

• (a) It suffices to prove that lim supn→∞ yn ≤ lim supn→∞ xn, since an
application of this inequality to (−xn) implies that lim infn→∞ xn ≤
lim infn→∞ yn, and we always have lim infn→∞ yn ≤ lim supn→∞ yn.

• Let L = lim supn→∞ xn. If ε > 0, there exists N ∈ N such that xn <
L + ε for all n > N . It follows that for n > N

yn =
x1 + x2 + . . . + xN

n
+

xN+1 + x2 + . . . + xn

n

≤ x1 + x2 + . . . + xN

n
+ L + ε.

Hence,

sup
k≥n

yk ≤
x1 + x2 + . . . + xN

n
+ L + ε.

Taking the limit as n →∞, we get

lim sup
n→∞

yn ≤ L + ε.

Since this holds for arbitrary ε > 0, we conclude that

lim sup
n→∞

yn ≤ L,

which proves the result.



• (b) If (xn) converges, then lim infn→∞ xn = lim supn→∞ xn, and (a)
implies that lim infn→∞ yn = lim supn→∞ yn, so (yn) converges to the
same limit as (xn).

• The convergence of (yn) does not imply the convergence of (xn). For
example, if xn = (−1)n+1, then

yn =

{
1/n if n is odd
0 if n is even

.

Thus, (xn) does not converge, but (yn) converges to 0.

2. Let A be a subset of a metric space X. Define the characteristic function
χA : X → R of A by

χA(x) =

{
1 if x ∈ A,
0 if x /∈ A.

Prove that χA is lower semi-continuous if and only if A is open.

Solution.

• First suppose that A is open. If x ∈ A, then χA(x) = 1 and there is a
neighborhood of x contained in A. Hence, if xn → x, then there exists
N such that xn ∈ A for all n ≥ N . It follows that χA(xn) = 1 for all
n ≥ N and

χA(x) = lim inf
n→∞

χA(xn).

If x /∈ A, then 0 = χA(x) ≤ χA(y) for every y ∈ X. Hence

χA(x) ≤ lim inf
n→∞

χA(xn)

for any sequence (xn). Hence χA is lower semi-continuous on X.

• For the converse, suppose that A is not open. Then the complement
Ac is not closed and there is a sequence (xn) in Ac that converges to
x ∈ A. It follows that χA(xn) = 0 for every n and χA(x) = 1, so

lim inf
n→∞

χA(xn) < χA(x).

Hence χA is not lower semi-continuous.



3. Let Cc(R) be the space of continuous functions f : R → R with compact
support. We define the sup-norm ‖ · ‖∞ and the L1-norm ‖ · ‖1 on Cc(R) by

‖f‖∞ = sup
x∈R

|f(x)|, ‖f‖1 =

∫ ∞

−∞
|f(x)| dx.

(a) Show that ‖f‖∞ and ‖f‖1 are finite for any f ∈ Cc(R).

(b) Is Cc(R) equipped with the sup-norm a Banach space?

(c) Let (fn) be a sequence in Cc(R). Answer the following questions, and
give a proof or a counterexample.

1. If fn → f ∈ Cc(R) as n →∞ with respect to the L1-norm, does fn → f
as n →∞ with respect to the sup-norm?

2. If fn → f ∈ Cc(R) as n → ∞ with respect to the sup-norm, does
fn → f as n →∞ with respect to the L1-norm?

Solution.

• (a) A function f ∈ Cc(R) is zero outside a compact interval [−R,R].
Hence

‖f‖∞ = sup
x∈[−R,R]

|f(x)| < ∞

since a continuous function on a compact set is bounded. Also, we have

‖f‖1 =

∫ R

−R

|f(x)| dx ≤ 2R‖f‖∞ < ∞.

• Note that the constant in this bound depends on the support of f . It
is not true that there exists an M > 0 such that ‖f‖1 ≤ M‖f‖∞ for
all f ∈ Cc(R).

• (b) The space (Cc(R), ‖ · ‖∞) is not complete, so it is not a Banach
space.

• To give a non-convergent Cauchy sequence, let χ : R → R be a continu-
ous function such that 0 ≤ χ(x) ≤ 1, χ(x) = 1 for |x| ≤ 1, and χ(x) = 0
for |x| ≥ 2. Let f : R → R be a strictly positive continuous function
such that f(x) → 0 as |x| → ∞; for example, f(x) = 1/(1 + x2). We
define a sequence (fn) in Cc(R) by

fn(x) = χ
(x

n

)
f(x).



• Then 0 ≤ fn(x) ≤ f(x) and

fn(x) =

{
f(x) if |x| ≤ n,
0 if |x| ≥ 2n.

For m > n we have

‖fm − fn‖∞ ≤ sup
|x|≥n

f(x).

Since sup|x|≥n f(x) → 0 as n →∞, the sequence (fn) is Cauchy.

• If ‖fn − g‖∞ → 0 as n → ∞, then fn(x) → g(x) for each x ∈ R, so
g = f . Since f does not have compact support, (fn) does not converge
in Cc(R).

• (c) Both statements are false.

1. For each n ∈ N, define fn ∈ Cc(R) by

fn(x) =

{
1− n|x| if |x| ≤ 1/n
0 if |x| > 1/n

.

Then

‖fn‖1 =
1

n
, ‖fn‖∞ = 1.

Thus, fn → 0 with respect to the L1-norm, but fn 6→ 0 with
respect to the sup-norm.

2. For each n ∈ N, define fn ∈ Cc(R) by

fn(x) =


1/n if |x| ≤ n
(n + 1− |x|)/n if n ≤ |x| ≤ n + 1
0 if |x| > n + 1

.

Then

‖fn‖1 > 2n · 1

n
= 2, ‖fn‖∞ =

1

n
.

Thus, fn → 0 with respect to the sup-norm, but fn 6→ 0 with
respect to the L1-norm.



Remark. The completion of Cc(R) with respect to the sup-norm is the
space C0(R) of continuous functions that vanish at infinity. The completion of
Cc(R) with respect to the L1-norm is the space L1(R) of Lebesgue measurable
functions f : R → R such that

∫
R |f(x)| dx < ∞, where we identify functions

that are equal almost everywhere.

4. A collection of sets has the finite intersection property if every finite
subcollection has nonempty intersection.

(a) Prove that a metric space X is compact if and only if every collection of
closed sets with the finite intersection property has non-empty intersection.

(b) Give an example of a collection of closed subsets of (0, 1] (with its usual
metric topology as a subset of R) that has the finite intersection property
but whose intersection is empty.

Solution.

• (a) Let {Fα | α ∈ A} be any collection of closed sets in X. Then⋂
α∈A

Fα = ∅

if and only if ⋃
α∈A

F c
α = X,

meaning that {F c
α | α ∈ A} is an open cover of X. This cover has a

finite subcover {F c
αn

| 1 ≤ n ≤ N} if and only if the intersection of
{Fαn | 1 ≤ n ≤ N} is empty. Thus every open cover of X has a finite
subcover if and only if every collection of closed sets with empty in-
tersection has a finite subcollection with empty intersection. It follows
that X is compact if and only if every collection of closed sets with the
finite intersection property has non-empty intersection.

• (b) The set Fn = (0, 1/n] is closed in (0, 1] for each n ∈ N. It has the
finite intersection property since

Fn1 ∩ Fn2 ∩ . . . ∩ Fnr = FN

where N = max{n1, . . . , nr}. However,

∞⋂
n=1

Fn = ∅.



5. Let `∞ be the space of real, bounded sequences,

`∞ = {(x1, x2, x3, . . .) | xn ∈ R, ∃M > 0 s.t. |xn| ≤ M for all n ∈ N} ,

equipped with the sup-norm

‖(x1, x2, x3, . . .)‖∞ = sup
n∈N

|xn|.

Prove that the ‘Hilbert cube’

C = {(x1, x2, x3, . . .) | 0 ≤ xn ≤ 1/n for every n ∈ N}

is a compact subset of `∞. (You can assume that `∞ is a Banach space.)

Solution.

• We will prove that C is complete and totally bounded, hence compact.

• Complete. Since `∞ is complete, and a closed subset of a complete
space is complete, it is enough to show that C is closed. Suppose that
(xk) is a sequence in C converging to x ∈ `∞ as k →∞. Let

xk =
(
xk

1, x
k
2, . . . , x

k
n, . . .

)
, x = (x1, x2, . . . , xn, . . .)

where xk
n, xn ∈ R. Then since |xk

n−xn| ≤ ‖xk−x‖∞ for each n ∈ N, we
have xk

n → xn as k → ∞; and since 0 ≤ xk
n ≤ 1/n for all k, it follows

that 0 ≤ xn ≤ 1/n. Hence, x ∈ C.

• Totally bounded. Let ε > 0. Choose N ∈ N such that 1/N < ε. The
set

CN = {(x1, x2, . . . , xN) | 0 ≤ xn ≤ 1/n for 1 ≤ n ≤ N}

is a bounded subset of the finite-dimensional space RN , equipped with
the maximum-norm, and hence it it totally bounded. Let{

xk,N ∈ RN | 1 ≤ k ≤ K
}

be a finite ε-net for CN . We write

xk,N =
(
xk,N

1 , xk,N
2 , . . . , xk,N

N

)
,



and define

xk =
(
xk,N

1 , xk,N
2 , . . . , xk,N

N , 0, 0, . . .
)
∈ `∞.

We claim that {
xk | 1 ≤ k ≤ K

}
is a finite ε-net for C. To prove this claim, let x = (x1, x2, . . . , xn, . . .)
be any point in C. Then xN = (x1, x2, . . . , xN) ∈ CN . Since

{
xk,N

}
is

an ε-net for CN , there is a 1 ≤ k ≤ K such that

max
1≤n≤N

∣∣xk,N
n − xn

∣∣ < ε.

Moreover, since x ∈ C we have∣∣xk
n − xn

∣∣ = |xn| ≤
1

n
<

1

N
for n > N.

Since 1/N < ε, it follows that∥∥xk − x
∥∥ = sup

n∈N

∣∣xk
n − xn

∣∣ < ε.

Thus the finite collection of open balls {Bε(x
k)} covers C, and C is

totally bounded.

Remark. Contrast C with the bounded, but non-compact, unit cube

B = {(x1, x2, x3, . . .) | 0 ≤ xn ≤ 1 for every n ∈ N} .

This example of an infinite dimensional cube C whose sides get thinner as
the dimension gets larger illustrates the heuristic idea that compact sets in
a normed linear space are bounded sets that are ‘almost’ finite-dimensional.


