ANALYSIS Math 201A, Fall 2006 Solutions: Problem Set 6

1. Let $C^1([0,1])$ denote the space of continuously differentiable functions $f:[0,1] \to \mathbb{R}$, and define

$$||f|| = \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)|.$$

(a) Show that $\|\cdot\|$ is a norm on $C^1([0,1])$.

(b) Prove that $C^1([0,1])$ is a Banach space with respect to $\|\cdot\|$.

Solution.

• (a) It is easy to check that $\|\cdot\|$ is a norm. For example, denoting the sup-norm by $\|\cdot\|_{\infty}$, we have

$$\begin{aligned} \|f + g\| &= \|f + g\|_{\infty} + \|f' + g'\|_{\infty} \\ &\leq \|f\|_{\infty} + \|g\|_{\infty} + \|f'\|_{\infty} + \|g'\|_{\infty} \\ &\leq \|f\| + \|g\|. \end{aligned}$$

- (b) Suppose that (f_n) is a Cauchy sequence in $C^1([0,1])$ with respect to $\|\cdot\|$. Then (f_n) , (f'_n) are Cauchy sequences of continuous functions with respect to $\|\cdot\|_{\infty}$. Since $(C([0,1]), \|\cdot\|_{\infty})$ is complete, there exist $f, g \in C([0,1])$ such that $f_n \to f, f'_n \to g$ uniformly (i.e. with respect to $\|\cdot\|_{\infty}$).
- Suppose that (f_n) is a sequence in C([0,1]) and $f_n \to f$ uniformly. Let

$$F_n(x) = \int_0^x f_n(t) dt, \qquad F(x) = \int_0^x f(t) dt.$$

Then $F_n \to F$ uniformly, since

$$||F_n - F||_{\infty} \le \sup_{x \in [0,1]} \int_0^x |f_n(t) - f(t)| \, dt \le ||f_n - f||_{\infty}$$

• Since $f'_n \to g$ uniformly, it follows that

$$f_n(x) - f_n(0) = \int_0^x f'_n(t) \, dt \to \int_0^x g(t) \, dt.$$

Since $f_n \to f$ uniformly, we conclude that

$$f(x) = f(0) + \int_0^x g(t) dt.$$

• The fundamental theorem of calculus implies that f is continuously differentiable and f' = g. Thus, $f_n \to f$ and $f'_n \to f'$ uniformly, which implies that $f_n \to f \in C^1([0,1])$ with respect to $\|\cdot\|$. This shows that $(C^1([0,1]), \|\cdot\|)$ is complete.

2. If $f:[0,1] \to \mathbb{R}$ is integrable, define $b_n \in \mathbb{R}$ by

$$b_n = \int_0^1 f(x) \sin(n\pi x) \, dx.$$

- (a) Prove that $b_n \to 0$ as $n \to \infty$ for any polynomial.
- (b) Prove that $b_n \to 0$ as $n \to \infty$ for any $f \in C([0, 1])$.

Solution.

• (a) If f is continuously differentiable, then an integration by parts implies that

$$b_n = -\left[f(x)\frac{\cos(n\pi x)}{n\pi}\right]_0^1 + \frac{1}{n\pi}\int_0^1 f'(x)\cos(n\pi x)\,dx.$$

Since $|\cos(n\pi x)| \leq 1$, it follows that $b_n \to 0$ as $n \to \infty$.

- (b) Suppose that $f \in C([0, 1])$. Given $\epsilon > 0$, there is a continuously differentiable function p such that $||f p||_{\infty} < \epsilon/2$. (For example, a polynomial; such a polynomial exists by the Weierstrass approximation theorem.)
- By (a), there exists $N \in \mathbb{N}$ such that

$$\left| \int_0^1 p(x) \sin(n\pi x) \, dx \right| < \frac{\epsilon}{2} \qquad \text{for all } n > N.$$

Then, for n > N, we have

$$\begin{aligned} |b_n| &= \left| \int_0^1 f(x) \sin(n\pi x) \, dx \right| \\ &\leq \left| \int_0^1 \left[f(x) - p(x) \right] \sin(n\pi x) \, dx \right| + \left| \int_0^1 p(x) \sin(n\pi x) \, dx \right| \\ &\leq \left\| |f - p||_\infty + \left| \int_0^1 p(x) \sin(n\pi x) \, dx \right| \\ &< \epsilon, \end{aligned}$$

which proves that $b_n \to 0$ as $n \to \infty$.

3. A function $f:[0,1] \to \mathbb{R}$ is said to be Hölder continuous with exponent α if

$$[f]_{\alpha} = \sup_{x \neq y \in [0,1]} \left\{ \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \right\}$$

is finite. Given $0 < \alpha \leq 1$ and M > 0, define

$$\mathcal{F} = \{ f \in C([0,1]) \mid ||f||_{\infty} \le M, \quad [f]_{\alpha} \le M \}.$$

Prove that \mathcal{F} is a compact subset of C([0, 1]) equipped with the sup-norm $\|\cdot\|_{\infty}$.

Solution.

• Suppose that $f_n \in \mathcal{F}$ and $f_n \to f$ uniformly. Then

$$||f||_{\infty} = \lim_{n \to \infty} ||f_n||_{\infty} \le M.$$

For every $x \neq y \in [0, 1]$ and $n \in \mathbb{N}$, we have

$$\frac{|f_n(x) - f_n(y)|}{|x - y|^{\alpha}} \le M.$$

Taking the limit of this equation as $n \to \infty$, and using the fact that $f_n \to f$ pointwise, we get

$$\frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \le M,$$

which implies that $[f]_{\alpha} \leq M$. Hence $f \in \mathcal{F}$, and \mathcal{F} is closed.

• If f is Hölder continuous and $x \in [0, 1]$, then

$$|f(x) - f(0)| \le [f]_{\alpha} |x|^{\alpha} \le [f]_{\alpha}.$$

Hence,

$$|f(x)| \le |f(x) - f(0)| + |f(0)| \le [f]_{\alpha} + |f(0)|$$

Thus, if $f \in \mathcal{F}$, we find that $|f(x)| \leq M + M$, so $||f||_{\infty} \leq 2M$, and therefore \mathcal{F} is bounded.

• Let $\epsilon > 0$. Choose

$$\delta = \left(\frac{\epsilon}{M}\right)^{1/\alpha} > 0.$$

Then if $f \in \mathcal{F}$ and $|x - y| < \delta$, we have

$$|f(x) - f(y)| \le [f]_{\alpha} |x - y|^{\alpha} \le M |x - y|^{\alpha} < \epsilon,$$

which shows that \mathcal{F} is (uniformly) equicontinuous.

• The Arzelà-Ascoli theorem implies that ${\mathcal F}$ is a compact.

4. Suppose that (f_n) is a sequence of continuous functions $f_n : [0,1] \to \mathbb{R}$ such that $|f_n(x)| \leq 1$ for all $n \in \mathbb{N}, x \in [0,1]$. Define $F_n : [0,1] \to \mathbb{R}$ by

$$F_n(x) = \int_0^x f_n(t) \, dt.$$

Prove that the sequence (F_n) has a subsequence that converges uniformly on [0, 1].

Solution.

• We have

$$||F_n||_{\infty} \le \sup_{x \in [0,1]} \left| \int_0^x f_n(t) \, dt \right| \le ||f_n||_{\infty} \le 1,$$

so the set $\{F_n \mid n \in \mathbb{N}\}$ is bounded.

• For $x, y \in [0, 1]$ and $n \in \mathbb{N}$, we have

$$|F_n(x) - F_n(y)| = \left| \int_x^y f_n(t) \, dt \right| \le ||f_n||_{\infty} |x - y| \le |x - y|.$$

It follows that $\{F_n \mid n \in \mathbb{N}\}$ is equicontinuous. (We can choose $\delta = \epsilon$ in the definition.)

• By the Arzelà-Ascoli theorem, the family $\{F_n \mid n \in \mathbb{N}\}$ is a precompact subset of C([0, 1]), so there exists a subsequence (F_{n_k}) that converges uniformly to some function $F \in C([0, 1])$.

5. Suppose that

$$\{f_n: K \to \mathbb{R} \mid n \in \mathbb{N}\}$$

is an equicontinuous family of functions on a compact metric space K. If (f_n) converges pointwise to a function f, prove that f is continuous. Is the convergence necessarily uniform?

Solution.

- First, we show that $\mathcal{F} = \{f_n \mid n \in \mathbb{N}\}$ is a bounded subset of C(K).
- The set \mathcal{F} is uniformly equicontinuous since it is equicontinuous and K is compact. Hence, we can choose $\delta > 0$ such that $|f_n(x) f_n(y)| < 1$ for all $n \in \mathbb{N}$ and $x, y \in K$ such that $d(x, y) < \delta$. Let $\{x_1, \ldots, x_N\}$ be a finite δ -net of K, which exists since K is compact and therefore totally bounded. The sequences $(f_n(x_i))_{n=1}^{\infty}$ converge for $1 \leq i \leq N$, so they are bounded, by M, say.
- If $x \in K$, then $d(x, x_i) < \delta$ for some $1 \le i \le N$, and therefore

$$|f_n(x)| \le |f_n(x_i)| + |f_n(x) - f_n(x_i)| \le M + 1.$$

It follows that $||f_n||_{\infty} \leq M + 1$ for every $n \in \mathbb{N}$, so \mathcal{F} is bounded.

- By the Arzelà-Ascoli theorem, \mathcal{F} is a precompact subset of C(K), so (f_n) has a uniformly convergent subsequence. The limit of this subsequence must be the same as the pointwise limit f of the whole sequence, so f is continuous, since the uniform limit of continuous functions is continuous.
- The sequence (f_n) is contained in a compact set $\overline{\mathcal{F}}$ and every uniformly convergent subsequence has the same limit, namely the pointwise limit f. It follows from the result of Problem 3, Set 4 that the whole sequence converges uniformly to f.