
Analysis
Math 201A, Fall 2006

Solutions: Problem Set 6

1. Let C1([0, 1]) denote the space of continuously differentiable functions
f : [0, 1] → R, and define

‖f‖ = sup
x∈[0,1]

|f(x)|+ sup
x∈[0,1]

|f ′(x)| .

(a) Show that ‖ · ‖ is a norm on C1([0, 1]).

(b) Prove that C1([0, 1]) is a Banach space with respect to ‖ · ‖.

Solution.

• (a) It is easy to check that ‖ · ‖ is a norm. For example, denoting the
sup-norm by ‖ · ‖∞, we have

‖f + g‖ = ‖f + g‖∞ + ‖f ′ + g′‖∞
≤ ‖f‖∞ + ‖g‖∞ + ‖f ′‖∞ + ‖g′‖∞
≤ ‖f‖+ ‖g‖.

• (b) Suppose that (fn) is a Cauchy sequence in C1([0, 1]) with respect
to ‖ · ‖. Then (fn), (f ′n) are Cauchy sequences of continuous functions
with respect to ‖ · ‖∞. Since (C([0, 1]), ‖ · ‖∞) is complete, there exist
f, g ∈ C([0, 1]) such that fn → f , f ′n → g uniformly (i.e. with respect
to ‖ · ‖∞).

• Suppose that (fn) is a sequence in C([0, 1]) and fn → f uniformly. Let

Fn(x) =

∫ x

0

fn(t) dt, F (x) =

∫ x

0

f(t) dt.

Then Fn → F uniformly, since

‖Fn − F‖∞ ≤ sup
x∈[0,1]

∫ x

0

|fn(t)− f(t)| dt ≤ ‖fn − f‖∞ .



• Since f ′n → g uniformly, it follows that

fn(x)− fn(0) =

∫ x

0

f ′n(t) dt →
∫ x

0

g(t) dt.

Since fn → f uniformly, we conclude that

f(x) = f(0) +

∫ x

0

g(t) dt.

• The fundamental theorem of calculus implies that f is continuously
differentiable and f ′ = g. Thus, fn → f and f ′n → f ′ uniformly, which
implies that fn → f ∈ C1([0, 1]) with respect to ‖ · ‖. This shows that
(C1([0, 1]), ‖ · ‖) is complete.



2. If f : [0, 1] → R is integrable, define bn ∈ R by

bn =

∫ 1

0

f(x) sin(nπx) dx.

(a) Prove that bn → 0 as n →∞ for any polynomial.

(b) Prove that bn → 0 as n →∞ for any f ∈ C([0, 1]).

Solution.

• (a) If f is continuously differentiable, then an integration by parts
implies that

bn = −
[
f(x)

cos(nπx)

nπ

]1

0

+
1

nπ

∫ 1

0

f ′(x) cos(nπx) dx.

Since | cos(nπx)| ≤ 1, it follows that bn → 0 as n →∞.

• (b) Suppose that f ∈ C([0, 1]). Given ε > 0, there is a continuously
differentiable function p such that ‖f − p‖∞ < ε/2. (For example, a
polynomial; such a polynomial exists by the Weierstrass approximation
theorem.)

• By (a), there exists N ∈ N such that∣∣∣∣∫ 1

0

p(x) sin(nπx) dx

∣∣∣∣ <
ε

2
for all n > N.

Then, for n > N , we have

|bn| =

∣∣∣∣∫ 1

0

f(x) sin(nπx) dx

∣∣∣∣
≤

∣∣∣∣∫ 1

0

[f(x)− p(x)] sin(nπx) dx

∣∣∣∣ +

∣∣∣∣∫ 1

0

p(x) sin(nπx) dx

∣∣∣∣
≤ ‖f − p‖∞ +

∣∣∣∣∫ 1

0

p(x) sin(nπx) dx

∣∣∣∣
< ε,

which proves that bn → 0 as n →∞.



3. A function f : [0, 1] → R is said to be Hölder continuous with exponent
α if

[f ]α = sup
x 6=y∈[0,1]

{
|f(x)− f(y)|
|x− y|α

}
is finite. Given 0 < α ≤ 1 and M > 0, define

F = {f ∈ C([0, 1]) | ‖f‖∞ ≤ M, [f ]α ≤ M} .

Prove that F is a compact subset of C([0, 1]) equipped with the sup-norm
‖ · ‖∞.

Solution.

• Suppose that fn ∈ F and fn → f uniformly. Then

‖f‖∞ = lim
n→∞

‖fn‖∞ ≤ M.

For every x 6= y ∈ [0, 1] and n ∈ N, we have

|fn(x)− fn(y)|
|x− y|α

≤ M.

Taking the limit of this equation as n → ∞, and using the fact that
fn → f pointwise, we get

|f(x)− f(y)|
|x− y|α

≤ M,

which implies that [f ]α ≤ M . Hence f ∈ F , and F is closed.

• If f is Hölder continuous and x ∈ [0, 1], then

|f(x)− f(0)| ≤ [f ]α|x|α ≤ [f ]α.

Hence,
|f(x)| ≤ |f(x)− f(0)|+ |f(0)| ≤ [f ]α + |f(0)|.

Thus, if f ∈ F , we find that |f(x)| ≤ M + M , so ‖f‖∞ ≤ 2M , and
therefore F is bounded.



• Let ε > 0. Choose

δ =
( ε

M

)1/α

> 0.

Then if f ∈ F and |x− y| < δ, we have

|f(x)− f(y)| ≤ [f ]α|x− y|α ≤ M |x− y|α < ε,

which shows that F is (uniformly) equicontinuous.

• The Arzelà-Ascoli theorem implies that F is a compact.



4. Suppose that (fn) is a sequence of continuous functions fn : [0, 1] → R
such that |fn(x)| ≤ 1 for all n ∈ N, x ∈ [0, 1]. Define Fn : [0, 1] → R by

Fn(x) =

∫ x

0

fn(t) dt.

Prove that the sequence (Fn) has a subsequence that converges uniformly on
[0, 1].

Solution.

• We have

‖Fn‖∞ ≤ sup
x∈[0,1]

∣∣∣∣∫ x

0

fn(t) dt

∣∣∣∣ ≤ ‖fn‖∞ ≤ 1,

so the set {Fn | n ∈ N} is bounded.

• For x, y ∈ [0, 1] and n ∈ N, we have

|Fn(x)− Fn(y)| =
∣∣∣∣∫ y

x

fn(t) dt

∣∣∣∣ ≤ ‖fn‖∞|x− y| ≤ |x− y|.

It follows that {Fn | n ∈ N} is equicontinuous. (We can choose δ = ε
in the definition.)

• By the Arzelà-Ascoli theorem, the family {Fn | n ∈ N} is a precompact
subset of C([0, 1]), so there exists a subsequence (Fnk

) that converges
uniformly to some function F ∈ C([0, 1]).



5. Suppose that
{fn : K → R | n ∈ N}

is an equicontinuous family of functions on a compact metric space K. If
(fn) converges pointwise to a function f , prove that f is continuous. Is the
convergence necessarily uniform?

Solution.

• First, we show that F = {fn | n ∈ N} is a bounded subset of C(K).

• The set F is uniformly equicontinuous since it is equicontinuous and K
is compact. Hence, we can choose δ > 0 such that |fn(x)− fn(y)| < 1
for all n ∈ N and x, y ∈ K such that d(x, y) < δ. Let {x1, . . . , xN} be a
finite δ-net of K, which exists since K is compact and therefore totally
bounded. The sequences (fn(xi))

∞
n=1 converge for 1 ≤ i ≤ N , so they

are bounded, by M , say.

• If x ∈ K, then d(x, xi) < δ for some 1 ≤ i ≤ N , and therefore

|fn(x)| ≤ |fn(xi)|+ |fn(x)− fn(xi)| ≤ M + 1.

It follows that ‖fn‖∞ ≤ M + 1 for every n ∈ N, so F is bounded.

• By the Arzelà-Ascoli theorem, F is a precompact subset of C(K), so
(fn) has a uniformly convergent subsequence. The limit of this subse-
quence must be the same as the pointwise limit f of the whole sequence,
so f is continuous, since the uniform limit of continuous functions is
continuous.

• The sequence (fn) is contained in a compact set F and every uniformly
convergent subsequence has the same limit, namely the pointwise limit
f . It follows from the result of Problem 3, Set 4 that the whole sequence
converges uniformly to f .


