Solutions: Problem Set 7
 Math 201A, Fall 2006

Problem 1. Let $r_{n}=x_{n+1} / x_{n}$ be the ratio of successive terms in the Fibonacci sequence (x_{n}) defined by $x_{n+1}=x_{n}+x_{n-1}$ with $x_{0}=x_{1}=1$. Prove that $r_{n} \rightarrow \phi$ as $n \rightarrow \infty$ where $\phi=(1+\sqrt{5}) / 2$ is the golden ratio.

Solution.

- Dividing the recursion relation for the Fibonacci sequence by x_{n}, we get

$$
r_{n+1}=1+\frac{1}{r_{n}}, \quad r_{1}=\frac{3}{2} .
$$

- Let $f(r)=1+1 / r$. Then $f^{\prime}(r)=-1 / r^{2}<0$ in $r>0$. Hence $f:(0, \infty) \rightarrow \mathbb{R}$ is monotone decreasing. Since $f(3 / 2)=5 / 3$ and $f(2)=3 / 2$, we see that $f:[3 / 2,2] \rightarrow[3 / 2,2]$. Moreover $\left|f^{\prime}(r)\right| \leq 4 / 9$ for $3 / 2 \leq r \leq 2$, so by the mean value theorem f is a contraction on $[3 / 2,2]$. The closed interval [3/2,2] is complete.
- By the contraction mapping theorem, f has a unique fixed point $\bar{r} \in$ $[3 / 2,2]$ and the iterates r_{n} defined by $r_{n+1}=f\left(r_{n}\right)$ with $r_{1} \in[3 / 2,2]$ converge to \bar{r} as $n \rightarrow \infty$.
- The fixed points \bar{r} of f satisfy $\bar{r}=1+1 / \bar{r}$, or $\bar{r}^{2}-\bar{r}-1=0$. Hence

$$
\bar{r}=\frac{1 \pm \sqrt{5}}{2} .
$$

The unique fixed point in $[3 / 2,2]$ is ϕ, so $r_{n} \rightarrow \phi$ as $n \rightarrow \infty$.

Problem 2. Show that the mapping $T: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
T x=1+\log \left(1+e^{x}\right)
$$

satisfies $|T x-T y|<|x-y|$ for all $x, y \in \mathbb{R}$ with $x \neq y$, but T does not have any fixed points. Why doesn't this example contradict the contraction mapping theorem?

Solution.

- Since

$$
T^{\prime}(x)=\frac{e^{x}}{1+e^{x}},
$$

we have $0<T^{\prime}<1$. The mean value theorem implies that if $x \neq y$

$$
T x-T y=T^{\prime}(\xi)(x-y)
$$

for some ξ between x and y, so

$$
|T x-T y|<|x-y|
$$

- We have

$$
T x-x=1+\log \left(1+e^{-x}\right)>1
$$

so T has no fixed point. (In fact, T maps any point a distance greater than 1 away from itself.)

- As $x, y \rightarrow \infty$, we have $|T x-T y| /|x-y| \rightarrow 1$, so there is no constant $c<1$ such that $|T x-T y| \leq c|x-y|$ for all $x, y \in \mathbb{R}$. Thus, T does not satisfy the hypothesis of the contraction mapping theorem.

Problem 3. Suppose that X is a compact metric space and $T: X \rightarrow X$ satisfies

$$
d(T x, T y)<d(x, y) \quad \text { for all } x, y \in X \text { with } x \neq y
$$

Prove that T has a unique fixed point in X.

Solution.

- If $T x=x, T y=y$, and $x \neq y$, then $d(x, y)=d(T x, T y)<d(x, y)$, which is a contradiction, so a fixed point of T is unique.
- Define $f: X \rightarrow \mathbb{R}$ by $f(x)=d(T x, x)$. Then f is a continuous function since $T: X \rightarrow X$, and $d: X \times X \rightarrow \mathbb{R}$ are continuous. The domain X of f is a compact set, so f attains its minimum at some point $\bar{x} \in X$. If $T \bar{x} \neq \bar{x}$, then

$$
f(T \bar{x})=d(T(T \bar{x}), T \bar{x})<d(T \bar{x}, \bar{x})=f(\bar{x}),
$$

which contradicts the fact that f attains its minimum at \bar{x}. Hence, \bar{x} is a fixed point of T.

Problem 4. Consider the following nonlinear integral equation:

$$
\begin{equation*}
f(x)-\frac{1}{\pi} \int_{0}^{1} \frac{f^{2}(y)}{1+x^{2}+y^{2}} d y=\frac{3}{4}, \quad 0 \leq x \leq 1 \tag{1}
\end{equation*}
$$

Prove that there is a unique continuous solution $f:[0,1] \rightarrow[0,1]$ of this equation.

Solution.

- Define T by

$$
(T f)(x)=\frac{3}{4}+\frac{1}{\pi} \int_{0}^{1} \frac{f^{2}(y)}{1+x^{2}+y^{2}} d y
$$

Then f is a solution of the integral equation if and only if $f=T f$, meaning that f is a fixed point of T.

- Let

$$
B=\{f \in C([0,1]) \mid f:[0,1] \rightarrow[0,1]\} .
$$

Then B is a closed subset of the complete space $C([0,1])$, since pointwise convergence - and hence uniform convergence - preserves the condition $0 \leq f(x) \leq 1$, so it is complete.

- Suppose that $k:[0,1] \times[0,1] \rightarrow \mathbb{R}$ is continuous. If $f:[0,1] \rightarrow \mathbb{R}$ is square-integrable and $g:[0,1] \rightarrow \mathbb{R}$ is given by

$$
g(x)=\int_{0}^{1} k(x, y) f^{2}(y) d y
$$

then

$$
\begin{aligned}
\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right| & =\left|\int_{0}^{1}\left[k\left(x_{1}, y\right)-k\left(x_{2}, y\right)\right] f^{2}(y) d y\right| \\
& \leq\left(\int_{0}^{1} f^{2}(y) d y\right) \sup _{y \in[0,1]}\left|k\left(x_{1}, y\right)-k\left(x_{2}, y\right)\right|
\end{aligned}
$$

Since k is continuous and $[0,1]$ is compact, it follows that g is continuous. In particular, this is true if f is continuous.

- By the previous part, if $f \in C([0,1])$ then $T f \in C([0,1])$. Since the integrand in (1) is nonnegative, we have $T f \geq 0$ for every $f \in C[0,1]$. (In fact, $T f \geq 3 / 4$.) If $|f| \leq 1$, then

$$
\begin{aligned}
T f(x) & \leq \frac{3}{4}+\frac{1}{\pi} \int_{0}^{1} \frac{1}{1+x^{2}+y^{2}} d y \\
& \leq \frac{3}{4}+\frac{1}{\pi} \int_{0}^{1} \frac{1}{1+y^{2}} d y \\
& \leq 1 .
\end{aligned}
$$

It follows that T maps B into itself.

- We claim that T is a contraction on B. If $f, g \in B$ then $\|f\|_{\infty},\|g\|_{\infty} \leq 1$ and

$$
\begin{aligned}
|T f(x)-T g(x)| & =\left|\frac{1}{\pi} \int_{0}^{1} \frac{f^{2}(y)-g^{2}(y)}{1+x^{2}+y^{2}} d y\right| \\
& \leq\left\|f^{2}-g^{2}\right\|_{\infty} \frac{1}{\pi} \int_{0}^{1} \frac{1}{1+x^{2}+y^{2}} d y \\
& \leq\left(\|f\|_{\infty}+\|g\|_{\infty}\right)\|f-g\|_{\infty} \frac{1}{\pi} \int_{0}^{1} \frac{1}{1+y^{2}} d y \\
& \leq \frac{1}{2}\|f-g\|_{\infty} .
\end{aligned}
$$

Hence, $\|T f-T g\|_{\infty} \leq c\|f-g\|_{\infty}$ with $c=1 / 2$.

- By the contraction mapping theorem, T has a unique fixed point $f \in B$, which proves the result.

