
Solutions: Problem Set 8
Math 201A, Fall 2006

Problem 1. Recall that a function f : [0, 1] → R is Lipschitz continuous if
its Lipschitz constant

Lip(f) = sup
x 6=y∈[0,1]

|f(x)− f(y)|
|x− y|

is finite.

(a) For M > 0, let

LM = {f ∈ C([0, 1]) | Lip(f) ≤ M} .

Show that LM is a closed subset of C([0, 1]) equipped with the sup-norm.

(b) Let L = {f ∈ C([0, 1]) | f is Lipschitz continuous}. Prove that L is a
linear subspace of C([0, 1]).

(c) Is L a closed linear subspace of C([0, 1]) equipped with the sup-norm?

Solution.

• (a) Suppose that fn ∈ LM and fn → f uniformly. For every x, y ∈ [0, 1]
and n ∈ N, we have

|fn(x)− fn(y)|
|x− y|

≤ M.

Taking the limit of this equation as n → ∞, and using the fact that
fn → f pointwise, we get

|f(x)− f(y)|
|x− y|

≤ M,

which implies that f ∈ LM . Thus, LM is closed.

• (b) If λ is a scalar, then

|(λf)(x)− (λf)(y)| = |λ||f(x)− f(y)|.

It follows that if f is Lipschitz continuous, then λf is Lipschitz con-
tinuous, and Lip(λf) = |λ|Lip(f). If f , g are Lipschitz continuous,
with

|f(x)− f(y)| ≤ M |x− y|, |g(x)− g(y)| ≤ N |x− y|,



then

|(f + g)(x)− (f + g)(y)| ≤ |f(x)− f(y)|+ |g(x)− g(y)|
≤ (M + N)|x− y|.

Hence (f +g) is Lipschitz continuous and Lip(f +g) ≤ Lip(f)+Lip(g).
It follows that L is a linear space.

• (c) Any polynomial is Lipschitz continuous by the mean value theorem
(since it is differentiable with bounded derivative on [0, 1]). By the
Weierstrass approximation theorem, the closure of L is C([0, 1]), so L
is not closed.

• Alternatively, one can give an explicit sequence (fn) of Lipschitz contin-
uous functions that converges uniformly to a non-Lipschitz continuous
function; for example, fn(x) = (x + 1/n)1/2.



Problem 2. Let c0(N) be the Banach space of real sequences x = (x1, x2, x3, . . .)
such that xn → 0 as n →∞, equipped with the sup norm

‖x‖ = sup
n∈N

|xn|.

(a) Let en = (0, 0, . . . , 0, 1, 0, . . .) be the sequence with nth term equal to
1 and all other terms equal to 0. Show that (en)∞n=1 is a Schauder basis of
c0(N).

(b) Let

f1 =
1

2
e1, fn =

1

2
en − en−1 for n ≥ 2.

Show that {fn | n ∈ N} is a linearly independent set. Is (fn)∞n=1 a Schauder
basis of c0(N)?

Solution.

• (a) If x ∈ c0, then∥∥∥∥∥x−
N∑

n=1

xnen

∥∥∥∥∥ = sup
n≥N+1

|xn| → 0 as N →∞,

so x =
∑∞

n=1 xnen.

• If x =
∑∞

n=1 cnen, then

|xn − cn| ≤ lim
N→∞

∥∥∥∥∥x−
N∑

n=1

cnen

∥∥∥∥∥ = 0,

so cn = xn, and this expansion is unique. Hence (en) is a Schauder
basis of c0.

• (b) If c1f1 + c2f2 + . . . + cNfN = 0, then(
1

2
c1 − c2

)
e1+

(
1

2
c2 − c3

)
e2+. . .+

(
1

2
cN−1 − cN

)
eN−1+

1

2
cNeN = 0.

Since {en} is a linearly independent set, it follows that

1

2
c1 − c2 = 0,

1

2
c2 − c3 = 0,

1

2
cN−1 − cN = 0,

1

2
cN = 0,

so cn = 0 for 1 ≤ n ≤ N , and {fn} is a linearly independent set.



• The sequence (fn) is not a Schauder basis since an expansion with
respect to this sequence is not unique. For example,

N∑
n=1

1

2n
fn =

1

2N+2
eN+1 → 0 as N →∞,

so for any c ∈ R, we have

0 =
∞∑

n=1

c

2n
fn.



Problem 3. Suppose that X, Y , Z are normed linear spaces and A : X → Y ,
B : Y → Z are bounded linear operators. Prove that BA : X → Z is a
bounded linear operator, and

‖BA‖ ≤ ‖A‖‖B‖.

Give an example to show that this inequality may be strict.

Solution.

• Using the definitions of ‖B‖ and ‖A‖, we have

‖BAx‖ = ‖B(Ax)‖
≤ ‖B‖ ‖Ax‖
≤ ‖B‖ ‖A‖ ‖x‖.

It follows that BA is bounded and ‖BA‖ ≤ ‖B‖‖A‖.

• Let A, B : R2 → R2 be the linear maps with matrices

[A] =

(
1 0
0 0

)
, [B] =

(
0 0
0 1

)
.

Then ‖A‖ = ‖B‖ = 1 with respect to any norm on R2, but BA = 0,
so ‖BA‖ = 0.



Problem 4. Let δ : C([0, 1]) → R be the functional that evaluates a function
at the origin, defined by δ(f) = f(0).

(a) Show that δ is a linear functional. What is the kernel of δ? What is the
range of δ?

(b) If C([0, 1]) is equipped with the sup-norm

‖f‖∞ = sup
0≤x≤1

|f(x)|,

show that δ is bounded and compute its norm.

(c) If C([0, 1]) is equipped with the 1-norm

‖f‖1 =

∫ 1

0

|f(x)| dx,

show that δ is unbounded.

(d) Give an example of a bounded linear functional F : C([0, 1]) → R where
C([0, 1]) is equipped with the 1-norm and compute its norm.

Solution.

• (a) We have δ(λf) = λf(0) = λδ(f) and

δ(f + g) = (f + g)(0) = f(0) + g(0) = δ(f) + δ(g),

so δ is a linear functional.

• The kernel of δ is {f ∈ C([0, 1]) | f(0) = 0} and the range of δ is R.

• (b) We have |δ(f)| = |f(0)| ≤ ‖f‖∞, so δ is bounded and ‖δ‖ ≤ 1.
Also, |δ(1)| = ‖1‖∞, so ‖δ‖ ≥ 1, and hence ‖δ‖ = 1.

• (c) If fn(x) = e−nx, then |δ(fn)| = 1 and ‖fn‖1 < 1/n. Hence δ is
unbounded, since

‖δ‖ ≥ sup
n∈N

|δ(fn)|
‖fn‖

= ∞.

• (d) Define a linear functional M : C([0, 1]) → R by

Mf =

∫ 1

0

f(x) dx.

Then |Mf | ≤ ‖f‖1 and |M1| = ‖1‖1, so M is bounded with ‖M‖ = 1.


