## Solutions: Problem Set 8 Math 201A, Fall 2006

Problem 1. Recall that a function $f:[0,1] \rightarrow \mathbb{R}$ is Lipschitz continuous if its Lipschitz constant

$$
\operatorname{Lip}(f)=\sup _{x \neq y \in[0,1]} \frac{|f(x)-f(y)|}{|x-y|}
$$

is finite.
(a) For $M>0$, let

$$
L_{M}=\{f \in C([0,1]) \mid \operatorname{Lip}(f) \leq M\} .
$$

Show that $L_{M}$ is a closed subset of $C([0,1])$ equipped with the sup-norm.
(b) Let $L=\{f \in C([0,1]) \mid f$ is Lipschitz continuous $\}$. Prove that $L$ is a linear subspace of $C([0,1])$.
(c) Is $L$ a closed linear subspace of $C([0,1])$ equipped with the sup-norm?

## Solution.

- (a) Suppose that $f_{n} \in L_{M}$ and $f_{n} \rightarrow f$ uniformly. For every $x, y \in[0,1]$ and $n \in \mathbb{N}$, we have

$$
\frac{\left|f_{n}(x)-f_{n}(y)\right|}{|x-y|} \leq M .
$$

Taking the limit of this equation as $n \rightarrow \infty$, and using the fact that $f_{n} \rightarrow f$ pointwise, we get

$$
\frac{|f(x)-f(y)|}{|x-y|} \leq M,
$$

which implies that $f \in L_{M}$. Thus, $L_{M}$ is closed.

- (b) If $\lambda$ is a scalar, then

$$
|(\lambda f)(x)-(\lambda f)(y)|=|\lambda||f(x)-f(y)| .
$$

It follows that if $f$ is Lipschitz continuous, then $\lambda f$ is Lipschitz continuous, and $\operatorname{Lip}(\lambda f)=|\lambda| \operatorname{Lip}(f)$. If $f, g$ are Lipschitz continuous, with

$$
|f(x)-f(y)| \leq M|x-y|, \quad|g(x)-g(y)| \leq N|x-y|,
$$

then

$$
\begin{aligned}
|(f+g)(x)-(f+g)(y)| & \leq|f(x)-f(y)|+|g(x)-g(y)| \\
& \leq(M+N)|x-y|
\end{aligned}
$$

Hence $(f+g)$ is Lipschitz continuous and $\operatorname{Lip}(f+g) \leq \operatorname{Lip}(f)+\operatorname{Lip}(g)$. It follows that $L$ is a linear space.

- (c) Any polynomial is Lipschitz continuous by the mean value theorem (since it is differentiable with bounded derivative on $[0,1]$ ). By the Weierstrass approximation theorem, the closure of $L$ is $C([0,1])$, so $L$ is not closed.
- Alternatively, one can give an explicit sequence $\left(f_{n}\right)$ of Lipschitz continuous functions that converges uniformly to a non-Lipschitz continuous function; for example, $f_{n}(x)=(x+1 / n)^{1 / 2}$.

Problem 2. Let $c_{0}(\mathbb{N})$ be the Banach space of real sequences $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ such that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$, equipped with the sup norm

$$
\|x\|=\sup _{n \in \mathbb{N}}\left|x_{n}\right|
$$

(a) Let $e_{n}=(0,0, \ldots, 0,1,0, \ldots)$ be the sequence with $n$th term equal to 1 and all other terms equal to 0 . Show that $\left(e_{n}\right)_{n=1}^{\infty}$ is a Schauder basis of $c_{0}(\mathbb{N})$.
(b) Let

$$
f_{1}=\frac{1}{2} e_{1}, \quad f_{n}=\frac{1}{2} e_{n}-e_{n-1} \quad \text { for } n \geq 2
$$

Show that $\left\{f_{n} \mid n \in \mathbb{N}\right\}$ is a linearly independent set. Is $\left(f_{n}\right)_{n=1}^{\infty}$ a Schauder basis of $c_{0}(\mathbb{N})$ ?

## Solution.

- (a) If $x \in c_{0}$, then

$$
\left\|x-\sum_{n=1}^{N} x_{n} e_{n}\right\|=\sup _{n \geq N+1}\left|x_{n}\right| \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

so $x=\sum_{n=1}^{\infty} x_{n} e_{n}$.

- If $x=\sum_{n=1}^{\infty} c_{n} e_{n}$, then

$$
\left|x_{n}-c_{n}\right| \leq \lim _{N \rightarrow \infty}\left\|x-\sum_{n=1}^{N} c_{n} e_{n}\right\|=0
$$

so $c_{n}=x_{n}$, and this expansion is unique. Hence $\left(e_{n}\right)$ is a Schauder basis of $c_{0}$.

- (b) If $c_{1} f_{1}+c_{2} f_{2}+\ldots+c_{N} f_{N}=0$, then

$$
\left(\frac{1}{2} c_{1}-c_{2}\right) e_{1}+\left(\frac{1}{2} c_{2}-c_{3}\right) e_{2}+\ldots+\left(\frac{1}{2} c_{N-1}-c_{N}\right) e_{N-1}+\frac{1}{2} c_{N} e_{N}=0 .
$$

Since $\left\{e_{n}\right\}$ is a linearly independent set, it follows that

$$
\frac{1}{2} c_{1}-c_{2}=0, \quad \frac{1}{2} c_{2}-c_{3}=0, \quad \frac{1}{2} c_{N-1}-c_{N}=0, \quad \frac{1}{2} c_{N}=0,
$$

so $c_{n}=0$ for $1 \leq n \leq N$, and $\left\{f_{n}\right\}$ is a linearly independent set.

- The sequence $\left(f_{n}\right)$ is not a Schauder basis since an expansion with respect to this sequence is not unique. For example,

$$
\sum_{n=1}^{N} \frac{1}{2^{n}} f_{n}=\frac{1}{2^{N+2}} e_{N+1} \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

so for any $c \in \mathbb{R}$, we have

$$
0=\sum_{n=1}^{\infty} \frac{c}{2^{n}} f_{n} .
$$

Problem 3. Suppose that $X, Y, Z$ are normed linear spaces and $A: X \rightarrow Y$, $B: Y \rightarrow Z$ are bounded linear operators. Prove that $B A: X \rightarrow Z$ is a bounded linear operator, and

$$
\|B A\| \leq\|A\|\|B\|
$$

Give an example to show that this inequality may be strict.

## Solution.

- Using the definitions of $\|B\|$ and $\|A\|$, we have

$$
\begin{aligned}
\|B A x\| & =\|B(A x)\| \\
& \leq\|B\|\|A x\| \\
& \leq\|B\|\|A\|\|x\| .
\end{aligned}
$$

It follows that $B A$ is bounded and $\|B A\| \leq\|B\|\|A\|$.

- Let $A, B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear maps with matrices

$$
[A]=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad[B]=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Then $\|A\|=\|B\|=1$ with respect to any norm on $\mathbb{R}^{2}$, but $B A=0$, so $\|B A\|=0$.

Problem 4. Let $\delta: C([0,1]) \rightarrow \mathbb{R}$ be the functional that evaluates a function at the origin, defined by $\delta(f)=f(0)$.
(a) Show that $\delta$ is a linear functional. What is the kernel of $\delta$ ? What is the range of $\delta$ ?
(b) If $C([0,1])$ is equipped with the sup-norm

$$
\|f\|_{\infty}=\sup _{0 \leq x \leq 1}|f(x)|
$$

show that $\delta$ is bounded and compute its norm.
(c) If $C([0,1])$ is equipped with the 1 -norm

$$
\|f\|_{1}=\int_{0}^{1}|f(x)| d x
$$

show that $\delta$ is unbounded.
(d) Give an example of a bounded linear functional $F: C([0,1]) \rightarrow \mathbb{R}$ where $C([0,1])$ is equipped with the 1 -norm and compute its norm.

## Solution.

- (a) We have $\delta(\lambda f)=\lambda f(0)=\lambda \delta(f)$ and

$$
\delta(f+g)=(f+g)(0)=f(0)+g(0)=\delta(f)+\delta(g)
$$

so $\delta$ is a linear functional.

- The kernel of $\delta$ is $\{f \in C([0,1]) \mid f(0)=0\}$ and the range of $\delta$ is $\mathbb{R}$.
- (b) We have $|\delta(f)|=|f(0)| \leq\|f\|_{\infty}$, so $\delta$ is bounded and $\|\delta\| \leq 1$. Also, $|\delta(1)|=\|1\|_{\infty}$, so $\|\delta\| \geq 1$, and hence $\|\delta\|=1$.
- (c) If $f_{n}(x)=e^{-n x}$, then $\left|\delta\left(f_{n}\right)\right|=1$ and $\left\|f_{n}\right\|_{1}<1 / n$. Hence $\delta$ is unbounded, since

$$
\|\delta\| \geq \sup _{n \in \mathbb{N}} \frac{\left|\delta\left(f_{n}\right)\right|}{\left\|f_{n}\right\|}=\infty
$$

- (d) Define a linear functional $M: C([0,1]) \rightarrow \mathbb{R}$ by

$$
M f=\int_{0}^{1} f(x) d x
$$

Then $|M f| \leq\|f\|_{1}$ and $|M 1|=\|1\|_{1}$, so $M$ is bounded with $\|M\|=1$.

