
Solutions: Problem Set 9
Math 201A, Fall 2006

Problem 1. Let c be the Banach space of all convergent real sequences
(xn)∞n=1, and c0 the subspace of sequences that converge to 0, both equipped
with the ∞-norm, ‖(xn)‖∞ = supn∈N |xn|.
(a) Define L : c → R by L(xn) = limn→∞ xn. Prove that L is a bounded
linear functional on c and compute its norm.

(b) For x = (xn) ∈ c, define Tx = y where y = (yn)∞n=1 is given by

y1 = Lx, yn+1 = xn − Lx for n ≥ 1.

Prove that T : c → c0 is a one-to-one, onto bounded linear map. (It fol-
lows from the open mapping theorem that T−1 is bounded, so c0 and c are
topologically isomorphic Banach spaces.)

Solution.

• (a) The functional L is linear, since if x = (xn) ∈ c, x̃ = (x̃n) ∈ c and
λ ∈ R, then

L(λx) = lim
n→∞

λxn = λ lim
n→∞

xn = λLx,

L(x + x̃) = lim
n→∞

(xn + x̃n) = lim
n→∞

xn + lim
n→∞

x̃n = Lx + Lx̃.

• We have

|L(xn)| = | lim
n→∞

xn| = lim
n→∞

|xn| ≤ sup
n∈N

|xn| = ‖(xn)‖∞,

so L is bounded, with ‖L‖ ≤ 1.

• Conversely, if xn = 1 for every n ∈ N, then (xn) ∈ c with L(xn) = 1
and ‖(xn)‖ = 1, so ‖L‖ ≥ 1. It follows that ‖L‖ = 1.

• (b) It follows from the definition of T that if x ∈ c and y = Tx, then
limn→∞ yn = 0 so y ∈ c0. Therefore T : c → c0. It is easy to check that
T is linear.

• If Tx = T x̃, then Lx = Lx̃ and xn − Lx = x̃n − Lx̃ for n ≥ 1, so
xn = x̃n, and x = x̃. Hence T is one-to-one.



• If y = (yn) ∈ c0, define the sequence x = (xn) by

xn = yn+1 + y1 n ≥ 1.

Then x ∈ c, with Lx = y1, and Tx = y. Hence T maps c onto c0.

• If x = (xn) ∈ c, then using the fact that ‖L‖ = 1 we have

‖Tx‖ = sup{|Lx|, |x1 − Lx|, |x2 − Lx|, . . .}
≤ sup{|Lx|, |x1|+ |Lx|, |x2|+ |Lx|, . . .}
≤ |Lx|+ sup{|x1|, |x2|, . . .}
≤ ‖L‖ ‖x‖+ ‖x‖
≤ 2‖x‖.

Thus, T is bounded and ‖T‖ ≤ 2.

• Although this was not asked, note that if x = (−1, 1, 1, 1, . . .) then
Tx = (1,−2, 0, 0, . . .). Since ‖x‖ = 1 and ‖Tx‖ = 2, we see that
‖T‖ = 2.

Remark. Although c0 and c are topologically isomorphic they are not iso-
metrically isomorphic (see Problem 4 in the Fall 2004 Final Exam).



Problem 2. A sequence (Tn) of bounded linear operators Tn : X → Y on
normed linear spaces X, Y is said to converge strongly to T : X → Y if
Tnx → Tx in norm in Y for every x ∈ X.

(a) Show that if Tn → T uniformly (i.e. with respect to the operator norm),
then Tn → T strongly.

(b) Let C0(R) be the Banach space of continuous functions that approach
zero at ∞, equipped with the sup-norm. For h ∈ R define the translation
operator Th : C0(R) → C0(R) by

Thf(x) = f (x + h) .

Prove that Th → I strongly as h → 0, where I is the identity operator on
C0(R). Prove that Th does not converge to I uniformly as h → 0.

(c) With Th as in (b), define Ah : C0(R) → C0(R) by

Ah =
Th − I

h
.

Does Ah converge strongly as h → 0? For what f ∈ C0(R) does Ahf converge
in norm as h → 0? Compute the limit when it exists.

Solution.

• (a) For any x ∈ X, we have

‖Tnx− Tx‖ ≤ ‖Tn − T‖ ‖x‖.

It follows that if Tn → T with respect to the operator norm, then
Tnx → Tx with respect to the norm on Y . Thus Tn → T uniformly
implies that Tn → T strongly.

• (b) Suppose that f ∈ C0(R). Let ε > 0. Since f(x) → 0 as |x| → ∞,
there exists R > 0 such that

|f(x)| < ε

2
for |x| ≥ R.

Since f is continuous, it is uniformly continuous on any compact in-
terval, and there exists 0 < δ ≤ 1 such that |f(x) − f(y)| < ε for all
x, y ∈ [−R−1, R+1] with |x−y| < δ. It follows that |f(x)−f(y)| < ε
for all x, y ∈ R such that |x − y| < δ, meaning that f is uniformly
continuous on R.



• If |h| < δ, then |f(x + h)− f(x)| < ε for all x ∈ R, and

‖Thf − f‖∞ = sup
x∈R

|f(x + h)− f(x)| < ε.

Hence, Thf → f uniformly as h → 0 for every f ∈ C0(R), meaning
that Th converges strongly to I.

• Given any h > 0, consider f ∈ C0(R) such that ‖f‖∞ = 1 and the
support of f is contained in the interval (0, h). Then Thf and f have
disjoint supports and ‖Thf − f‖∞ = 1. It follows that ‖Th − I‖ ≥ 1,
so Th does not converge to I with respect to the operator norm.

• (c) If Ahf converges as h → 0 with respect to the sup-norm, then the
pointwise limit

lim
h→0

Ahf(x) = lim
h→0

[
f(x + h)− f(x)

h

]
exists for every x ∈ R, so f is differentiable on R. Furthermore, the
derivative f ′ is a uniform limit of functions in C0(R), so f ′ ∈ C0(R)
since C0(R) is closed with respect to uniform convergence. Thus, Ahf
does not converge with respect to the sup-norm for any f ∈ C0(R) that
is not differentiable on R with f ′ ∈ C0(R). Hence Ah does not converge
strongly on C0(R) as h → 0.

• If f is continuously differentiable, then the fundamental theorem of
calculus implies that

Ahf(x) =
1

h

∫ x+h

x

f ′(t) dt.

It follows that

Ahf(x)− f ′(x) =
1

h

∫ x+h

x

[f ′(t)− f ′(x)] dt,

where we have written

f ′(x) =
1

h

∫ x+h

x

f ′(x) dt.



• If f ′ ∈ C0(R), then the uniform continuity of f ′ implies that given ε > 0
there exists δ > 0 such that |f ′(x)− f ′(y)| < ε if |x− y| < δ. Hence, if
|h| < δ, we have

|Ahf(x)− f ′(x)| ≤ 1

h

∫ x+h

x

|f ′(t)− f ′(x)| dt < ε.

It follows that ‖Ahf − f‖∞ < ε if |h| < δ, which proves that Ahf → f
uniformly for f ∈ C0(R) if and only if f ′ ∈ C0(R).

Remark. It is not quite correct to say that Ahf converges uniformly if
f ∈ C0(R) is continuously differentiable on R, since the derivative need not
approach 0 at infinity; for example, consider

f(x) =
sin x3

1 + x2
.



Problem 3. Suppose that A : Rn → Rm is a linear map with m× n matrix
(aij) with respect to the standard bases on Rn and Rm.

(a) Compute the operator (or matrix) norm ‖A‖ if the domain Rn is equipped
with the 1-norm,

‖(x1, . . . , xn)‖1 = |x1|+ . . . + |xn|,

and the range Rm is equipped with the ∞-norm,

‖(x1, . . . , xn)‖∞ = max {|x1|, . . . , |xn|} .

(b) If the domain Rn is equipped with the ∞-norm and the range Rm is
equipped with the 1-norm, prove that

‖A‖ ≤
m∑

i=1

n∑
j=1

|aij| ,

with equality if aij ≥ 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Solution.

• (a) We have

‖Ax‖∞ = max
1≤i≤m

∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣
≤ max

1≤i≤m

{
n∑

j=1

|aij| |xj|

}

≤ max
1≤i≤m

{
max
1≤j≤n

{|aij|}
n∑

j=1

|xj|

}
≤ max {|aij| | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ‖x‖1.

It follows that the operator norm of

A : (Rn, ‖ · ‖1) → (Rm, ‖ · ‖∞)

satisfies
‖A‖ ≤ max {|aij| | 1 ≤ i ≤ m, 1 ≤ j ≤ n} .



• Choose 1 ≤ I ≤ m, 1 ≤ J ≤ n such that

|aIJ | = max {|aij| | 1 ≤ i ≤ m, 1 ≤ j ≤ n} .

Define x = (xj) ∈ Rn by xj = 0 if j 6= J and

xJ =

{
1 if aIJ > 0,

−1 if aIJ < 0.

(If aIJ = 0, then A = 0 and ‖A‖ = 0.) Then ‖x‖1 = 1 and ‖Ax‖∞ =
|aIJ |, so ‖A‖ ≥ |aIJ |. It follows that

‖A‖ = max {|aij| | 1 ≤ i ≤ m, 1 ≤ j ≤ n} .

• (b) We have

‖Ax‖1 =
m∑

i=1

∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣
≤

{
m∑

i=1

n∑
j=1

|aij|

}
max
1≤j≤n

|xj|

≤

{
m∑

i=1

n∑
j=1

|aij|

}
‖x‖∞.

It follows that the operator norm of

A : (Rn, ‖ · ‖∞) → (Rm, ‖ · ‖1)

satisfies

‖A‖ ≤
m∑

i=1

n∑
j=1

|aij| .

• If the matrix of A has nonnegative coefficients and x = (1, 1, . . . , 1),
then ‖x‖∞ = 1 and

‖Ax‖1 =
m∑

i=1

n∑
j=1

aij.

It follows that

‖A‖ =
m∑

i=1

n∑
j=1

aij.



Problem 4. Let `2(N) be the Banach space of square-summable real se-
quences x = (xi)

∞
i=1 with norm

‖x‖ =

(
∞∑
i=1

|xi|2
)1/2

.

A sequence (x(n)) in `2(N),

x(n) = (x
(n)
1 , x

(n)
2 , x

(n)
3 , . . .),

converges weakly to x = (x1, x2, x3, . . .) ∈ `2(N) as n →∞ if for every

y = (y1, y2, y3, . . .) ∈ `2(N)

we have
∞∑
i=1

x
(n)
i yi →

∞∑
i=1

xiyi as n →∞.

Let e(n) = (0, 0, . . . 0, 1, 0, . . .) be the element of `2(N) with xi = 1 when i = n
and xi = 0 otherwise.

(a) Prove that the sequence (e(n)) converges weakly to 0 as n →∞, but does
not converge strongly (i.e. in norm) to any limit.

(b) Does the sequence (ne(n)) converge weakly as n →∞?

Solution.

• We use the notation

〈x, y〉 =
∞∑
i=1

xiyi

for the inner-product 〈·, ·〉 : `2(N) × `2(N) → R. According to the
Cauchy-Schwarz inequality |〈x, y〉| ≤ ‖x‖ ‖y‖, so the inner product
〈x, y〉 is well-defined and finite for every x, y ∈ `2(N).

• Weak convergence x(n) ⇀ x in `2(N) then means that

〈x(n), y〉 → 〈x, y〉 as n →∞ for every y ∈ `2(N).



• (a) If y = (y1, y2, y3, . . .) ∈ `2(N), then

∞∑
i=1

|yi|2 < ∞,

so yi → 0 as i →∞.

• For any y ∈ `2(N), we have

〈e(n), y〉 = yn → 0 = 〈0, y〉 as n →∞,

which means that e(n) converges weakly to 0 as n →∞.

• For every m 6= n, we have ‖e(m) − e(n)‖ =
√

2, so the sequence (e(n)) is
not Cauchy and therefore does not converge in norm.

• (b) The sequence (ne(n)) does not converge weakly. For example, con-
sider y = (yi) defined by

yi =
1

i3/4
.

Then y ∈ `2(N), since
∞∑
i=1

1

i3/2
< ∞,

but
〈ne(n), y〉 = n1/4,

does not converge as n → ∞. Hence, there is no x ∈ `2(N) such that
〈ne(n), y〉 → 〈x, y〉 as n →∞.

Remark. It is a consequence of the uniform boundedness theorem that any
weakly convergent sequence is bounded in norm, as is true of the sequence
in (a) but not of the sequence in (b).


