Problem 1. Let c be the Banach space of all convergent real sequences $\left(x_{n}\right)_{n=1}^{\infty}$, and c_{0} the subspace of sequences that converge to 0 , both equipped with the ∞-norm, $\left\|\left(x_{n}\right)\right\|_{\infty}=\sup _{n \in \mathbb{N}}\left|x_{n}\right|$.
(a) Define $L: c \rightarrow \mathbb{R}$ by $L\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n}$. Prove that L is a bounded linear functional on c and compute its norm.
(b) For $x=\left(x_{n}\right) \in c$, define $T x=y$ where $y=\left(y_{n}\right)_{n=1}^{\infty}$ is given by

$$
y_{1}=L x, \quad y_{n+1}=x_{n}-L x \quad \text { for } n \geq 1
$$

Prove that $T: c \rightarrow c_{0}$ is a one-to-one, onto bounded linear map. (It follows from the open mapping theorem that T^{-1} is bounded, so c_{0} and c are topologically isomorphic Banach spaces.)

Solution.

- (a) The functional L is linear, since if $x=\left(x_{n}\right) \in c, \tilde{x}=\left(\tilde{x}_{n}\right) \in c$ and $\lambda \in \mathbb{R}$, then

$$
\begin{aligned}
& L(\lambda x)=\lim _{n \rightarrow \infty} \lambda x_{n}=\lambda \lim _{n \rightarrow \infty} x_{n}=\lambda L x, \\
& L(x+\tilde{x})=\lim _{n \rightarrow \infty}\left(x_{n}+\tilde{x}_{n}\right)=\lim _{n \rightarrow \infty} x_{n}+\lim _{n \rightarrow \infty} \tilde{x}_{n}=L x+L \tilde{x} .
\end{aligned}
$$

- We have

$$
\left|L\left(x_{n}\right)\right|=\left|\lim _{n \rightarrow \infty} x_{n}\right|=\lim _{n \rightarrow \infty}\left|x_{n}\right| \leq \sup _{n \in \mathbb{N}}\left|x_{n}\right|=\left\|\left(x_{n}\right)\right\|_{\infty}
$$

so L is bounded, with $\|L\| \leq 1$.

- Conversely, if $x_{n}=1$ for every $n \in \mathbb{N}$, then $\left(x_{n}\right) \in c$ with $L\left(x_{n}\right)=1$ and $\left\|\left(x_{n}\right)\right\|=1$, so $\|L\| \geq 1$. It follows that $\|L\|=1$.
- (b) It follows from the definition of T that if $x \in c$ and $y=T x$, then $\lim _{n \rightarrow \infty} y_{n}=0$ so $y \in c_{0}$. Therefore $T: c \rightarrow c_{0}$. It is easy to check that T is linear.
- If $T x=T \tilde{x}$, then $L x=L \tilde{x}$ and $x_{n}-L x=\tilde{x}_{n}-L \tilde{x}$ for $n \geq 1$, so $x_{n}=\tilde{x}_{n}$, and $x=\tilde{x}$. Hence T is one-to-one.
- If $y=\left(y_{n}\right) \in c_{0}$, define the sequence $x=\left(x_{n}\right)$ by

$$
x_{n}=y_{n+1}+y_{1} \quad n \geq 1 .
$$

Then $x \in c$, with $L x=y_{1}$, and $T x=y$. Hence T maps c onto c_{0}.

- If $x=\left(x_{n}\right) \in c$, then using the fact that $\|L\|=1$ we have

$$
\begin{aligned}
\|T x\| & =\sup \left\{|L x|,\left|x_{1}-L x\right|,\left|x_{2}-L x\right|, \ldots\right\} \\
& \leq \sup \left\{|L x|,\left|x_{1}\right|+|L x|,\left|x_{2}\right|+|L x|, \ldots\right\} \\
& \leq|L x|+\sup \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots\right\} \\
& \leq\|L\|\|x\|+\|x\| \\
& \leq 2\|x\| .
\end{aligned}
$$

Thus, T is bounded and $\|T\| \leq 2$.

- Although this was not asked, note that if $x=(-1,1,1,1, \ldots)$ then $T x=(1,-2,0,0, \ldots)$. Since $\|x\|=1$ and $\|T x\|=2$, we see that $\|T\|=2$.

Remark. Although c_{0} and c are topologically isomorphic they are not isometrically isomorphic (see Problem 4 in the Fall 2004 Final Exam).

Problem 2. A sequence $\left(T_{n}\right)$ of bounded linear operators $T_{n}: X \rightarrow Y$ on normed linear spaces X, Y is said to converge strongly to $T: X \rightarrow Y$ if $T_{n} x \rightarrow T x$ in norm in Y for every $x \in X$.
(a) Show that if $T_{n} \rightarrow T$ uniformly (i.e. with respect to the operator norm), then $T_{n} \rightarrow T$ strongly.
(b) Let $C_{0}(\mathbb{R})$ be the Banach space of continuous functions that approach zero at ∞, equipped with the sup-norm. For $h \in \mathbb{R}$ define the translation operator $T_{h}: C_{0}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})$ by

$$
T_{h} f(x)=f(x+h)
$$

Prove that $T_{h} \rightarrow I$ strongly as $h \rightarrow 0$, where I is the identity operator on $C_{0}(\mathbb{R})$. Prove that T_{h} does not converge to I uniformly as $h \rightarrow 0$.
(c) With T_{h} as in (b), define $A_{h}: C_{0}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})$ by

$$
A_{h}=\frac{T_{h}-I}{h}
$$

Does A_{h} converge strongly as $h \rightarrow 0$? For what $f \in C_{0}(\mathbb{R})$ does $A_{h} f$ converge in norm as $h \rightarrow 0$? Compute the limit when it exists.

Solution.

- (a) For any $x \in X$, we have

$$
\left\|T_{n} x-T x\right\| \leq\left\|T_{n}-T\right\|\|x\|
$$

It follows that if $T_{n} \rightarrow T$ with respect to the operator norm, then $T_{n} x \rightarrow T x$ with respect to the norm on Y. Thus $T_{n} \rightarrow T$ uniformly implies that $T_{n} \rightarrow T$ strongly.

- (b) Suppose that $f \in C_{0}(\mathbb{R})$. Let $\epsilon>0$. Since $f(x) \rightarrow 0$ as $|x| \rightarrow \infty$, there exists $R>0$ such that

$$
|f(x)|<\frac{\epsilon}{2} \quad \text { for }|x| \geq R .
$$

Since f is continuous, it is uniformly continuous on any compact interval, and there exists $0<\delta \leq 1$ such that $|f(x)-f(y)|<\epsilon$ for all $x, y \in[-R-1, R+1]$ with $|x-y|<\delta$. It follows that $|f(x)-f(y)|<\epsilon$ for all $x, y \in \mathbb{R}$ such that $|x-y|<\delta$, meaning that f is uniformly continuous on \mathbb{R}.

- If $|h|<\delta$, then $|f(x+h)-f(x)|<\epsilon$ for all $x \in \mathbb{R}$, and

$$
\left\|T_{h} f-f\right\|_{\infty}=\sup _{x \in \mathbb{R}}|f(x+h)-f(x)|<\epsilon
$$

Hence, $T_{h} f \rightarrow f$ uniformly as $h \rightarrow 0$ for every $f \in C_{0}(\mathbb{R})$, meaning that T_{h} converges strongly to I.

- Given any $h>0$, consider $f \in C_{0}(\mathbb{R})$ such that $\|f\|_{\infty}=1$ and the support of f is contained in the interval $(0, h)$. Then $T_{h} f$ and f have disjoint supports and $\left\|T_{h} f-f\right\|_{\infty}=1$. It follows that $\left\|T_{h}-I\right\| \geq 1$, so T_{h} does not converge to I with respect to the operator norm.
- (c) If $A_{h} f$ converges as $h \rightarrow 0$ with respect to the sup-norm, then the pointwise limit

$$
\lim _{h \rightarrow 0} A_{h} f(x)=\lim _{h \rightarrow 0}\left[\frac{f(x+h)-f(x)}{h}\right]
$$

exists for every $x \in \mathbb{R}$, so f is differentiable on \mathbb{R}. Furthermore, the derivative f^{\prime} is a uniform limit of functions in $C_{0}(\mathbb{R})$, so $f^{\prime} \in C_{0}(\mathbb{R})$ since $C_{0}(\mathbb{R})$ is closed with respect to uniform convergence. Thus, $A_{h} f$ does not converge with respect to the sup-norm for any $f \in C_{0}(\mathbb{R})$ that is not differentiable on \mathbb{R} with $f^{\prime} \in C_{0}(\mathbb{R})$. Hence A_{h} does not converge strongly on $C_{0}(\mathbb{R})$ as $h \rightarrow 0$.

- If f is continuously differentiable, then the fundamental theorem of calculus implies that

$$
A_{h} f(x)=\frac{1}{h} \int_{x}^{x+h} f^{\prime}(t) d t
$$

It follows that

$$
A_{h} f(x)-f^{\prime}(x)=\frac{1}{h} \int_{x}^{x+h}\left[f^{\prime}(t)-f^{\prime}(x)\right] d t
$$

where we have written

$$
f^{\prime}(x)=\frac{1}{h} \int_{x}^{x+h} f^{\prime}(x) d t
$$

- If $f^{\prime} \in C_{0}(\mathbb{R})$, then the uniform continuity of f^{\prime} implies that given $\epsilon>0$ there exists $\delta>0$ such that $\left|f^{\prime}(x)-f^{\prime}(y)\right|<\epsilon$ if $|x-y|<\delta$. Hence, if $|h|<\delta$, we have

$$
\left|A_{h} f(x)-f^{\prime}(x)\right| \leq \frac{1}{h} \int_{x}^{x+h}\left|f^{\prime}(t)-f^{\prime}(x)\right| d t<\epsilon
$$

It follows that $\left\|A_{h} f-f\right\|_{\infty}<\epsilon$ if $|h|<\delta$, which proves that $A_{h} f \rightarrow f$ uniformly for $f \in C_{0}(\mathbb{R})$ if and only if $f^{\prime} \in C_{0}(\mathbb{R})$.

Remark. It is not quite correct to say that $A_{h} f$ converges uniformly if $f \in C_{0}(\mathbb{R})$ is continuously differentiable on \mathbb{R}, since the derivative need not approach 0 at infinity; for example, consider

$$
f(x)=\frac{\sin x^{3}}{1+x^{2}}
$$

Problem 3. Suppose that $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map with $m \times n$ matrix $\left(a_{i j}\right)$ with respect to the standard bases on \mathbb{R}^{n} and \mathbb{R}^{m}.
(a) Compute the operator (or matrix) norm $\|A\|$ if the domain \mathbb{R}^{n} is equipped with the 1-norm,

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{1}=\left|x_{1}\right|+\ldots+\left|x_{n}\right|
$$

and the range \mathbb{R}^{m} is equipped with the ∞-norm,

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
$$

(b) If the domain \mathbb{R}^{n} is equipped with the ∞-norm and the range \mathbb{R}^{m} is equipped with the 1-norm, prove that

$$
\|A\| \leq \sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

with equality if $a_{i j} \geq 0$ for all $1 \leq i \leq m, 1 \leq j \leq n$.

Solution.

- (a) We have

$$
\begin{aligned}
\|A x\|_{\infty} & =\max _{1 \leq i \leq m}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \\
& \leq \max _{1 \leq i \leq m}\left\{\sum_{j=1}^{n}\left|a_{i j}\right|\left|x_{j}\right|\right\} \\
& \leq \max _{1 \leq i \leq m}\left\{\max _{1 \leq j \leq n}\left\{\left|a_{i j}\right|\right\} \sum_{j=1}^{n}\left|x_{j}\right|\right\} \\
& \leq \max \left\{\left|a_{i j}\right| \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}\|x\|_{1} .
\end{aligned}
$$

It follows that the operator norm of

$$
A:\left(\mathbb{R}^{n},\|\cdot\|_{1}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{\infty}\right)
$$

satisfies

$$
\|A\| \leq \max \left\{\left|a_{i j}\right| \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

- Choose $1 \leq I \leq m, 1 \leq J \leq n$ such that

$$
\left|a_{I J}\right|=\max \left\{\left|a_{i j}\right| \mid 1 \leq i \leq m, 1 \leq j \leq n\right\} .
$$

Define $x=\left(x_{j}\right) \in \mathbb{R}^{n}$ by $x_{j}=0$ if $j \neq J$ and

$$
x_{J}=\left\{\begin{aligned}
1 & \text { if } a_{I J}>0, \\
-1 & \text { if } a_{I J}<0
\end{aligned}\right.
$$

(If $a_{I J}=0$, then $A=0$ and $\|A\|=0$.) Then $\|x\|_{1}=1$ and $\|A x\|_{\infty}=$ $\left|a_{I J}\right|$, so $\|A\| \geq\left|a_{I J}\right|$. It follows that

$$
\|A\|=\max \left\{\left|a_{i j}\right| \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

- (b) We have

$$
\begin{aligned}
\|A x\|_{1} & =\sum_{i=1}^{m}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \\
& \leq\left\{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|\right\} \max _{1 \leq j \leq n}\left|x_{j}\right| \\
& \leq\left\{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|\right\}\|x\|_{\infty} .
\end{aligned}
$$

It follows that the operator norm of

$$
A:\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{1}\right)
$$

satisfies

$$
\|A\| \leq \sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

- If the matrix of A has nonnegative coefficients and $x=(1,1, \ldots, 1)$, then $\|x\|_{\infty}=1$ and

$$
\|A x\|_{1}=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} .
$$

It follows that

$$
\|A\|=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}
$$

Problem 4. Let $\ell^{2}(\mathbb{N})$ be the Banach space of square-summable real sequences $x=\left(x_{i}\right)_{i=1}^{\infty}$ with norm

$$
\|x\|=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{2}\right)^{1 / 2}
$$

A sequence $\left(x^{(n)}\right)$ in $\ell^{2}(\mathbb{N})$,

$$
x^{(n)}=\left(x_{1}^{(n)}, x_{2}^{(n)}, x_{3}^{(n)}, \ldots\right),
$$

converges weakly to $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in \ell^{2}(\mathbb{N})$ as $n \rightarrow \infty$ if for every

$$
y=\left(y_{1}, y_{2}, y_{3}, \ldots\right) \in \ell^{2}(\mathbb{N})
$$

we have

$$
\sum_{i=1}^{\infty} x_{i}^{(n)} y_{i} \rightarrow \sum_{i=1}^{\infty} x_{i} y_{i} \quad \text { as } n \rightarrow \infty
$$

Let $e^{(n)}=(0,0, \ldots 0,1,0, \ldots)$ be the element of $\ell^{2}(\mathbb{N})$ with $x_{i}=1$ when $i=n$ and $x_{i}=0$ otherwise.
(a) Prove that the sequence $\left(e^{(n)}\right)$ converges weakly to 0 as $n \rightarrow \infty$, but does not converge strongly (i.e. in norm) to any limit.
(b) Does the sequence $\left(n e^{(n)}\right)$ converge weakly as $n \rightarrow \infty$?

Solution.

- We use the notation

$$
\langle x, y\rangle=\sum_{i=1}^{\infty} x_{i} y_{i}
$$

for the inner-product $\langle\cdot, \cdot\rangle: \ell^{2}(\mathbb{N}) \times \ell^{2}(\mathbb{N}) \rightarrow \mathbb{R}$. According to the Cauchy-Schwarz inequality $|\langle x, y\rangle| \leq\|x\|\|y\|$, so the inner product $\langle x, y\rangle$ is well-defined and finite for every $x, y \in \ell^{2}(\mathbb{N})$.

- Weak convergence $x^{(n)} \rightharpoonup x$ in $\ell^{2}(\mathbb{N})$ then means that

$$
\left\langle x^{(n)}, y\right\rangle \rightarrow\langle x, y\rangle \quad \text { as } n \rightarrow \infty \text { for every } y \in \ell^{2}(\mathbb{N})
$$

- (a) If $y=\left(y_{1}, y_{2}, y_{3}, \ldots\right) \in \ell^{2}(\mathbb{N})$, then

$$
\sum_{i=1}^{\infty}\left|y_{i}\right|^{2}<\infty
$$

so $y_{i} \rightarrow 0$ as $i \rightarrow \infty$.

- For any $y \in \ell^{2}(\mathbb{N})$, we have

$$
\left\langle e^{(n)}, y\right\rangle=y_{n} \rightarrow 0=\langle 0, y\rangle \quad \text { as } n \rightarrow \infty,
$$

which means that $e^{(n)}$ converges weakly to 0 as $n \rightarrow \infty$.

- For every $m \neq n$, we have $\left\|e^{(m)}-e^{(n)}\right\|=\sqrt{2}$, so the sequence $\left(e^{(n)}\right)$ is not Cauchy and therefore does not converge in norm.
- (b) The sequence $\left(n e^{(n)}\right)$ does not converge weakly. For example, consider $y=\left(y_{i}\right)$ defined by

$$
y_{i}=\frac{1}{i^{3 / 4}} .
$$

Then $y \in \ell^{2}(\mathbb{N})$, since

$$
\sum_{i=1}^{\infty} \frac{1}{i^{3 / 2}}<\infty
$$

but

$$
\left\langle n e^{(n)}, y\right\rangle=n^{1 / 4},
$$

does not converge as $n \rightarrow \infty$. Hence, there is no $x \in \ell^{2}(\mathbb{N})$ such that $\left\langle n e^{(n)}, y\right\rangle \rightarrow\langle x, y\rangle$ as $n \rightarrow \infty$.

Remark. It is a consequence of the uniform boundedness theorem that any weakly convergent sequence is bounded in norm, as is true of the sequence in (a) but not of the sequence in (b).

