
Continuous Functions on Metric Spaces

Math 201A, Fall 2016

1 Continuous functions

Definition 1. Let (X, dX) and (Y, dY ) be metric spaces. A function f :
X → Y is continuous at a ∈ X if for every ε > 0 there exists δ > 0 such that
dX(x, a) < δ implies that dY (f(x), f(a)) < ε.

In terms of open balls, the definition says that f (Bδ(a)) ⊂ Bε(f(a)). In
future, X, Y will denote metric spaces, and we will not distinguish explicitly
between the metrics on different spaces.

Definition 2. A subset U ⊂ X is a neighborhood of a point a ∈ X if
Bε(a) ⊂ U for some ε > 0.

A set is open if and only if it is a neighborhood of every point in the
set, and U is a neighborhood of x if and only if U ⊃ G where G is an open
neighborhood of x. Note that slightly different definitions of a neighborhood
are in use; some definitions require that a neighborhood is an open set, which
we do not assume.

Proposition 3. A function f : X → Y is continuous at a ∈ X if and only
if for every neighborhood V ⊂ Y of f(a) the inverse image f−1(V ) ⊂ X is a
neighborhood of a.

Proof. Suppose that the condition holds. If ε > 0, then V = Bε (f(a))
is a neighborhood of f(a), so U = f−1(V ) is a neighborhood of a. Then
Bδ(a) ⊂ U for some δ > 0, which implies that f (Bδ(a)) ⊂ Bε(f(a)), so f is
continuous at a.

Conversely, if f is continuous at a and V is a neighborhood of f(a),
then Bε (f(a)) ⊂ V for some ε > 0. By continuity, there exists δ > 0 such
that f (Bδ(a)) ⊂ Bε (f(a)), so Bδ(a) ⊂ f−1(V ), meaning that f−1(V ) is a
neighborhood of a.
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Definition 4. A function f : X → Y is sequentially continuous at a ∈ X if
xn → a in X implies that f(xn)→ f(a) in Y .

Theorem 5. A function f : X → Y is continuous at a if and only if it is
sequentially continuous at a.

Proof. Suppose that f is continuous at a. Let ε > 0 be given and suppose
that xn → a. Then there exists δ > 0 such that d(f(x), f(a)) < ε for
d(x, a) < δ, and there exists N ∈ N such that d(xn, a) < δ for n > N .
It follows that d(f(xn), f(a)) < ε for n > N , so f(xn) → f(a) and f is
sequentially continuous at a.

Conversely, suppose that f is not continuous at a. Then there exists
ε0 > 0 such that for every n ∈ N there exists xn ∈ X with d(xn, a) < 1/n
and d(f(xn), f(a)) ≥ ε0. Then xn → a but f(xn) 6→ f(a), so f is not
sequentially continuous at a.

Definition 6. A function f : X → Y is continuous if f is continuous at
every x ∈ X.

Theorem 7. A function f : X → Y is continuous if and only if f−1(V ) is
open in X for every V that is open in Y .

Proof. Suppose that the inverse image under f of every open set is open. If
x ∈ X and V ⊂ Y is a neighborhood of f(x), then V ⊃ W where W is an
open neighborhood of f(x). Then f−1(W ) is an open neighborhood of x and
f−1(W ) ⊂ f−1(V ), so f−1(V ) is a neighborhood of x, which shows that f is
continuous.

Conversely, suppose that f : X → Y is continuous and V ⊂ Y is open. If
x ∈ f−1(V ), then V is an open neighborhood of f(x), so the continuity of f
implies that f−1(V ) is a neighborhood of x. It follows that f−1(V ) is open
since it is a neighborhood of every point in the set.

Theorem 8. The composition of continuous functions is continuous

Proof. Suppose that f : X → Y and g : Y → Z are continuous, and g ◦ f :
X → Z is their composition. If W ⊂ Z is open, then V = g−1(W ) is open,
so U = f−1(V ) is open. It follows that (g ◦f)−1(W ) = f−1 (g−1(W )) is open,
so g ◦ f is continuous.

Theorem 9. The continuous image of a compact set is compact.

2



Proof. Suppose that f : X → Y is continuous and X is compact. If {Gα :
α ∈ I} is an open cover of f(X), then {f−1(Gα) : α ∈ I} is an open cover of
X, since the inverse image of an open set is open. Since X is compact, it has
a finite subcover {f−1(Gαi

) : i = 1, 2, . . . , n}. Then {Gαi
: i = 1, 2, . . . , n} is

a finite subcover of f(X), which proves that f(X) is compact.

2 Uniform convergence

A subset A ⊂ X is bounded if A ⊂ BR(x) for some (and therefore every)
x ∈ X and some R > 0. Equivalently, A is bounded if

diamA = sup {d(x, y) : x, y ∈ A} <∞.

Definition 10. A function f : X → Y is bounded if f(X) ⊂ Y is bounded.

Definition 11. A sequence (fn) of functions fn : X → Y converges uniformly
to a function f : X → Y if for every ε > 0 there exists N ∈ N such that
n > N implies that d (fn(x), f(x)) < ε for all x ∈ X.

Unlike pointwise convergence, uniform convergence preserves bounded-
ness and continuity.

Proposition 12. Let (fn) be a sequence of functions fn : X → Y . If each
fn is bounded and fn → f uniformly, then f : X → Y is bounded.

Proof. By the uniform convergence, there exists n ∈ N such that

d (fn(x), f(x)) ≤ 1 for all x ∈ X.

Since fn is bounded, there exists y ∈ Y and R > 0 such that

d (fn(x), y) ≤ R for all x ∈ X.

It follows that

d(f(x), y) ≤ d (f(x), fn(x)) + d (fn(x), y) ≤ R + 1 for all x ∈ X,

meaning that f is bounded.

Theorem 13. Let (fn) be a sequence of functions fn : X → Y . If each fn is
continuous at a ∈ X and fn → f uniformly, then f : X → Y is continuous
at as.
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Proof. Let a ∈ X. Since (fn) converges uniformly to f , given ε > 0, there
exists n ∈ N such that

d (fn(x), f(x)) <
ε

3
for all x ∈ X,

and since fn is continuous at a, there exists δ > 0 such that

d (fn(x), fn(a)) <
ε

3
if d(x, a) < δ.

If d(x, a) < δ, then it follows that

d (f(x), f(a)) ≤ d (f(x), fn(x)) + d (fn(x), fn(a)) + d (fn(a), f(a)) < ε,

which proves that f is continuous at a.

Since uniform convergence preserves continuity at a point, the uniform
limit of continuous functions is continuous.

Definition 14. A sequence (fn) of functions fn : X → Y is uniformly
Cauchy if for every ε > 0 there exists N ∈ N such that m,n > N implies
that d (fm(x), fn(x)) < ε for all x ∈ X.

A uniformly convergent sequence of functions is uniformly Cauchy. The
converse is also true for functions that take values in a complete metric space.

Theorem 15. Let Y be a complete metric space. Then a uniformly Cauchy
sequence (fn) of functions fn : X → Y converges uniformly to a function
f : X → Y .

Proof. The uniform Cauchy condition implies that the sequence (fn(x)) is
Cauchy in Y for every x ∈ X. Since Y is complete, fn(x)→ f(x) as n→∞
for some f(x) ∈ Y .

Given ε > 0, choose N ∈ N such that for all m,n > N we have

d (fm(x), fn(x)) < ε for all x ∈ X.

Taking the limit of this inequality as m→∞, we get that

d (f(x), fn(x)) ≤ ε for all x ∈ X

for all n > N , which shows that (fn) converges uniformly to f as n→∞.
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3 Function spaces

Definition 16. The metric space (B(X, Y ), d∞) is the space of bounded
functions f : X → Y equipped with the uniform metric

d∞(f, g) = sup {d (f(x), g(x)) : x ∈ X} .

It is straightforward to check that d∞ is a metric on B(X, Y ); in partic-
ular, d∞(f, g) <∞ if f , g are bounded functions.

Theorem 17. Let Y be a complete metric space. Then (B(X, Y ), d∞) is a
complete metric space.

Proof. If (fn) is a Cauchy sequence in B(X, Y ), then (fn) is uniformly
Cauchy, so by Theorem 15 it converges uniformly to a function f : X → Y .
By Proposition 12, f ∈ B(X, Y ), so B(X, Y ) is complete.

Definition 18. The space C(X, Y ) is the space of continuous functions f :
X → Y , and (Cb(X, Y ), d∞) is the space of bounded, continuous functions
f : X → Y equipped with the uniform metric d∞.

Theorem 19. Let X be a metric space and Y a complete metric space.
Then (Cb(X, Y ), d∞) is a complete metric space.

Proof. By Theorem 13, Cb(X, Y ) is a closed subspace of the complete metric
space B(X, Y ), so it is a complete metric space.

4 Continuous functions on compact sets

Definition 20. A function f : X → Y is uniformly continuous if for ev-
ery ε > 0 there exists δ > 0 such that if x, y ∈ X and d(x, y) < δ, then
d (f(x), f(y)) < ε.

Theorem 21. A continuous function on a compact metric space is bounded
and uniformly continuous.

Proof. If X is a compact metric space and f : X → Y a continuous function,
then f(X) is compact and therefore bounded, so f is bounded.

Let ε > 0. For each a ∈ X, there exists δ(a, ε) > 0 such that

d (f(x), f(a)) <
ε

2
for all x ∈ X with d(x, a) < δ(a, ε).
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Then
{
Bδ(a,ε)(a) : a ∈ X

}
is an open cover of X, so by the Lebesgue covering

lemma, there exists η > 0 such that for every x ∈ X there exists a ∈ X with
Bη(x) ⊂ Bδ(a,ε)(a). Hence, d(x, y) < η implies that x, y ∈ Bδ(a,ε)(a), so

d (f(x), f(y)) ≤ d (f(x), f(a)) + d (f(a), f(y)) < ε,

which shows that f is uniformly continuous.

For real-valued functions, we have the following basic result.

Theorem 22 (Weierstrass). If X is compact and f : X → R is continuous,
then f is bounded and attains its maximum and minimum values.

Proof. The image f(X) ⊂ R is compact, so it is closed and bounded. It
follows that M = supX f <∞ and M ∈ f(X). Similarly, infX f ∈ f(X).

5 The Arzelà-Ascoli theorem

Definition 23. A family of functions F ⊂ C(X, Y ) is equicontinuous if for
every a ∈ X and ε > 0, there exists δ > 0 such that if x ∈ X and d(x, a) < δ,
then d (f(x), f(a)) < ε for every f ∈ F .

Definition 24. A family of functions F ⊂ C(X, Y ) is uniformly equicon-
tinuous if for every ε > 0, there exists δ > 0 such that if x, y ∈ X and
d(x, y) < δ, then d (f(x), f(y)) < ε for every f ∈ F .

Theorem 25. If X is a compact metric space and F ⊂ C(X, Y ) is equicon-
tinuous, then F is uniformly equicontinuous.

Proof. Let F ⊂ C(X, Y ) be equicontinuous, and suppose that ε > 0. For
each a ∈ X, there exists δ(a, ε) > 0 such that if x ∈ X and d(x, a) < δ(a, ε),
then d (f(x), f(a)) < ε/2 for every f ∈ F . Then {Bδ(a,ε)(a) : a ∈ X} is
an open cover of X, so by the Lebesgue covering lemma there exist η > 0
such that for every x ∈ X we have Bη(x) ⊂ Bδ(a,ε)(a) for some a ∈ X. If
d(x, y) < η, then x, y ∈ Bδ(a,ε)(a), so

d (f(x), f(y)) ≤ d (f(x), f(a)) + d (f(a), f(y)) < ε for every f ∈ F ,

which shows that F is uniformly equicontinuous.
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For simplicity, we now specialize to real-valued functions. In that case,
we write C(X) = C(X,R). If X is compact, then C(X) equipped with
the sup-norm ‖f‖∞ = supx∈X |f(x)|, and the usual pointwise definitions of
vector addition and scalar multiplication, is a Banach space.

Definition 26. A family of functions F ⊂ C(X) is pointwise bounded if for
every x ∈ X there exists M > 0 such that |f(x)| ≤M for all f ∈ F .

Definition 27. A subset A ⊂ X is of a metric space X is precompact (or
relatively compact) if its closure Ā is compact.

Lemma 28. Let X be a complete metric space. A subset A ⊂ X is precom-
pact if and only if it is totally bounded.

Proof. If A is precompact, then the compact set Ā is totally bounded, so
A ⊂ Ā is totally bounded.

Conversely, suppose that A is totally bounded. If ε > 0, then A has a
finite (ε/2)-net E, and every x ∈ Ā belongs to B̄ε/2(a) for some a ∈ E. It
follows that E is a finite ε-net for Ā, so Ā is totally bounded. Moreover, Ā
is a closed subset of a complete space, so Ā is complete, which shows that Ā
is compact and A is precompact.

Theorem 29 (Arzelà-Ascoli). Let X be a compact metric space. A family
F ⊂ C(X) of continuous functions f : X → R is precompact with respect
to the sup-norm topology if and only if it is pointwise bounded and equicon-
tinuous. Furthermore, F is compact if and only if it is closed, pointwise
bounded, and equicontinuous.

Proof. Since C(X) is complete, a subset is complete if and only if it is closed.
It follows that F is compact if and only if it is closed and totally bounded.
From Lemma 28, F is precompact if and only if it is totally bounded. Thus,
it suffices to prove that F is totally bounded if and only if it is pointwise
bounded and equicontinuous.

First, suppose that F is pointwise bounded and equicontinuous, and let
ε > 0. We will construct a finite ε-net for F .

The family F is equicontinuous and X is compact, so F is uniformly
equicontinuous, and there exists δ > 0 such that

d(x, y) < δ implies that |f(x)− f(y)| < ε

3
for all f ∈ F .
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Since X is compact, it has a finite δ-net E = {xi : 1 ≤ i ≤ n} such that

X =
n⋃
i=1

Bδ(xi).

Furthermore, since F is pointwise bounded,

Mi = sup {|f(xi)| : f ∈ F} <∞ for each 1 ≤ i ≤ n.

Let M = max{Mi : 1 ≤ i ≤ n}. Then [−M,M ] ⊂ R is compact, so it has a
finite (ε/6)-net F = {yj ∈ R : 1 ≤ j ≤ m} such that

[−M,M ] ⊂
m⋃
j=1

Bε/6(yj).

Here, Bε/6(yj) is an open interval in R of diameter ε/3.
Let Φ be the finite set of maps φ : E → F . For each φ ∈ Φ, define

Fφ =
{
f ∈ F : f(xi) ∈ Bε/6 (φ(xi)) for i = 1, . . . , n

}
.

Since f(xi) ∈ [−M,M ] and {Bε/6(yj) : 1 ≤ j ≤ m} covers [−M,M ], we have

F =
⋃
φ∈Φ

Fφ.

Let f, g ∈ Fφ. Then for each xi ∈ E, we have f(xi), g(xi) ∈ Bε/6(yj) for
some yj ∈ F , so

|f(xi)− g(xi)| <
ε

3
.

Furthermore, if x ∈ X, then x ∈ Bδ(xi) for some xi ∈ E, so d(x, xi) < δ, and
the uniform equicontinuity of F implies that

|f(x)− g(x)| ≤ |f(x)− f(xi)|+ |f(xi)− g(xi)|+ |g(xi)− g(x)| < ε.

Thus, ‖f − g‖∞ < ε, so the diameter of Fφ is less than ε, and Fφ ⊂ Bε(fφ)
for some fφ ∈ F . Hence,

F ⊂
⋃
φ∈Φ

Bε(fφ)

is totally bounded.
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Conversely, suppose that F ⊂ C(X) is precompact. Then F is bounded,
so there exists M > 0 such that ‖f‖∞ ≤M for all f ∈ F , which implies that
F is pointwise (and, in fact, uniformly) bounded.

Moreover, F is totally bounded, so given ε > 0, there exists a finite (ε/3)-
net E = {fi : 1 ≤ i ≤ n} for F . Each fi : X → R is uniformly continuous, so
there exists δi > 0 such that d(x, y) < δi implies that |fi(x) − fi(y)| < ε/3.
Let δ = min{δi : 1 ≤ i ≤ n}. If f ∈ F , then ‖f − fi‖∞ < ε/3 for some
fi ∈ E, so d(x, y) < δ implies that

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |fi(y)− f(y)| < ε,

meaning that F is uniformly equicontinuous.

This result, and the proof, also applies to complex-valued functions in
C(X,C), vector-valued functions in C(X,Rn), and — with a stronger hy-
pothesis — to functions that take values in a complete metric space Y : If
X is compact, then F ⊂ C(X, Y ) is precompact with respect to the uni-
form metric d∞ if and only if F is equicontinuous and pointwise precompact,
meaning that the set {f(x) : f ∈ F} is precompact in Y for every x ∈ X.

6 The Peano existence theorem

As an application of the Arzelà-Ascoli theorem, we prove an existence result
for an initial-value problem for a scalar ODE. (Essentially the same proof
applies to systems of ODEs.)

Theorem 30. Suppose that f : R×R→ R is continuous and u0 ∈ R. Then
there exists T > 0 such that the initial-value problem

du

dt
= f(u, t),

u(0) = u0

has a continuously differentiable solution u : [0, T ]→ R.

Proof. For each h > 0, construct an approximate solution uh : [0,∞) → R
as follows. Let tn = nh and define a sequence (un)∞n=0 recursively by

un+1 = un + hf (un, tn) .
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Define uh(t) by linear interpolation between un and un+1, meaning that

uh(t) = un +
(t− tn)

h
(un+1 − un) for tn ≤ t ≤ tn+1.

Choose L, T1 > 0, and let

R1 =
{

(x, t) ∈ R2 : |x− u0| ≤ L and 0 ≤ t ≤ T1

}
.

Then, since f is continuous and R1 is compact,

M = sup
(x,t)∈R1

|f(x, t)| <∞.

If (uk, tk) ∈ R1 for every 0 ≤ k ≤ n− 1, then

|un − u0| ≤
n−1∑
k=0

|uk+1 − uk| = h
n−1∑
k=0

|f (uk, tk)| ≤Mtn.

Thus, (un, tn) ∈ R1 so long as Mtn ≤ L and tn ≤ T1. Let

T = min

{
T1,

L

M

}
, N =

T

h
,

and define R ⊂ R1 by

R =
{

(x, t) ∈ R2 : |x− u0| ≤ L and 0 ≤ t ≤ T
}
.

Then it follows that (un, tn) ∈ R if 0 ≤ tn ≤ T and 0 ≤ n ≤ N . Moreover,

|un+1 − un| = h|f(un, tn)| ≤Mh for every 0 ≤ n ≤ N.

It is clear that the linear interpolant uh then satisfies

|uh(s)− uh(t)| ≤M |s− t| for every 0 ≤ s, t ≤ T .

To show this explicitly, suppose that 0 ≤ s < t ≤ T , tm ≤ s ≤ tm+1, and
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tn ≤ t ≤ tn+1. Then

|uh(t)− uh(s)| ≤ |uh(t)− uh(tn)|+
n−1∑

k=m+1

|uh(tk+1)− uh(tk)|

+ |uh(tm+1)− uh(s)|

≤ (t− tn) |f(un, tn)|+ h

n−1∑
k=m+1

|f(uk, tk)|

+ (tm+1 − s) |f(um, tm)|
≤M [(t− tn) + (tn − tm+1) + (tm+1 − s)]
≤M |t− s|.

In addition, |uh(t)| ≤ L for t ∈ [0, T ].
By the Arzelà-Ascoli theorem, the family {uh : h > 0} is precompact in

C([0, T ]), so we can extract a subsequence (uhj)
∞
j=1 such that hj → 0 and

uhj → u uniformly to some u ∈ C([0, T ]) as j →∞.
To show that u is a solution of the initial-value problem, we note that,

by the fundamental theorem of calculus, u ∈ C1([0, T ]) is a solution if and
only if u ∈ C([0, T ]) and u satisfies the integral equation

u(t) = u0 +

∫ t

0

f (u(s), s) ds for 0 ≤ t ≤ T .

Let χ[0,t] be the characteristic function of the interval [0, t], defined by

χ[0,t](s) =

{
1 if 0 ≤ s ≤ t

0 if s > t

Then the piecewise-linear approximation uh satisfies the equation

uh(t) = u0 +
N−1∑
k=0

∫ tk+1

tk

χ[0,t](s)f (uh(tk), tk) ds.

Let ε > 0. Since f : R → R is continuous on a compact set, it is uniformly
continuous, and there exists δ > 0 such that

|x− y| < Mδ and |s− t| < δ implies that |f(x, s)− f(y, t)| < ε/T .
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For 0 < h < δ and tk ≤ s ≤ tk+1, we have |uh(s) − uh(tk)| < Mδ and
|s− tk| < δ, so for 0 ≤ t ≤ T we get that∣∣∣∣uh(t)− u0 −

∫ t

0

f (uh(s), s) ds

∣∣∣∣
≤

N−1∑
k=0

∫ tk+1

tk

χ[0,t](s) |f((uh(s), s)− f (uh(tk), tk)| ds

<
ε

T

N−1∑
k=0

∫ tk+1

tk

χ[0,t](s) ds

< ε.

Thus,

uh(t)− u0 −
∫ t

0

f (uh(s), s) ds→ 0 uniformly on [0, T ] as h→ 0.

Since uhj → u uniformly as j →∞, it follows that

u0 +

∫ t

0

f
(
uhj(s), s

)
ds→ u(t) uniformly on [0, T ] as j →∞.

However, the uniform convergence uhj → u and the uniform continuity of
f imply that f(uhj(t), t) → f(u(t), t) uniformly. Then, since the Riemann
integral of the limit of a uniformly convergent sequence of Riemann-integrable
functions is the limit of the Riemann integrals, we get that

u0 +

∫ t

0

f
(
uhj(s), s

)
ds→ u0 +

∫ t

0

f (u(s), s) ds as j →∞

for each t ∈ [0, T ]. Hence, since the limits must be the same,

u(t) = u0 +

∫ t

0

f (u(s), s) ds,

so u ∈ C1([0, T ]) is a solution of the initial-value problem.

7 The Stone-Weierstrass theorem

Definition 31. A subset A ⊂ X is dense in X if Ā = X.
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Definition 32. A family of functions A ⊂ C(X) is an algebra if it is a linear
subspace of C(X) and f, g ∈ A implies that fg ∈ A.

Here, fg is the usual pointwise product, (fg)(x) = f(x)g(x).

Definition 33. A family of functions F ⊂ C(X) separates points if for every
pair of distinct points x, y ∈ X there exists f ∈ F such that f(x) 6= f(y).

A constant function f : X → R is a function such that f(x) = c for all
x ∈ X and some c ∈ R.

Theorem 34 (Stone-Weierstrass). Let X be a compact metric space. If
A ⊂ C(X) is an algebra that separates points and contains the constant
functions, then A is dense in (C(X), ‖ · ‖∞).

Proof. Suppose that f ∈ C(X) and let ε > 0. By Lemma 35, for every
pair of points y, z ∈ X, there exists gyz ∈ A such that gyz(y) = f(y) and
gyz(z) = f(z).

First, fix y ∈ X. Since f − gyz is continuous and (f − gyz)(z) = 0, for
each z ∈ X there exists δ(z) > 0 such that

gyz(x) < f(x) + ε for all x ∈ Bδ(z)(z).

The family of open balls {Bδ(z)(z) : z ∈ X} covers X, so it has a finite
subcover {Bδi(zi) : 1 ≤ i ≤ n} since X is compact. By Lemma 37, the
function

gy = min{gyzi : 1 ≤ i ≤ n}
belongs to Ā. Moreover, gy(y) = f(y) and

gy(x) < f(x) + ε for all x ∈ X.

Next, consider gy. Since f − gy is continuous and (f − gy)(y) = 0, for
each y ∈ Y there exists δ(y) > 0 such that

gy(x) > f(x)− ε for all x ∈ Bδ(y)(y).

Then {Bδ(y)(y) : y ∈ X} is an open cover of X, so it has a finite subcover
{Bδ(yj)(yj) : 1 ≤ j ≤ m}. By Lemma 37, the function

g = max{gyj : 1 ≤ j ≤ m}

belongs to Ā. Furthermore,

f(x)− ε < g(x) < f(x) + ε for all x ∈ X,

so ‖f − g‖∞ < ε, which shows that Ā is dense in C(X).
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To complete the proof of the Stone-Weierstrass theorem, we prove several
lemmas.

Lemma 35. Let A ⊂ C(X) be a linear subspace that contains the constant
functions and separates points. If f ∈ C(X) and y, z ∈ X, then there exists
gyz ∈ A such that gyz(y) = f(y) and gyz(z) = f(z).

Proof. Given distinct points y, z ∈ X and real numbers a, b ∈ R, there exists
h ∈ A with h(y) 6= h(z). Then g ∈ A defined by

g(x) = a+ (b− a)

[
h(x)− h(y)

h(z)− h(y)

]
satisfies g(y) = a, g(z) = b. If y 6= z, choose gyz as above with a = f(y) and
b = f(z); if y = z, choose gyy = f .

The next lemma is a special case of the Weierstrass approximation theo-
rem.

Lemma 36. There is a sequence (pn) of polynomials pn : [−1, 1] → R such
that pn(t)→ |t| as n→∞ uniformly on [−1, 1].

Proof. Define a sequence of polynomials qn : [0, 1] → R by the recursion
relation

qn+1(t) = qn(t) +
1

2

(
t− q2

n(t)
)
, q0(t) = 0.

We claim that for every n ∈ N, we have

qn−1(t) ≤ qn(t) ≤
√
t for all t ∈ [0, 1].

Suppose as an induction hypothesis that this inequality holds for some
n ∈ N. Then qn+1(t) ≥ qn(t) and

√
t− qn+1(t) =

√
t− qn(t)− 1

2

(
t− q2

n(t)
)

=
(√

t− qn(t)
)(

1− 1

2

(√
t+ qn(t)

))
≥ 0.

so qn(t) ≤ qn+1(t) ≤
√
t. Moreover, q1(t) = t/2, so q0(t) ≤ q1(t) ≤

√
t, and

the inequality follows by induction.

14



For each t ∈ [0, 1] the real sequence (qn(t)) is monotone increasing and
bounded from above by 1, so it converges to some limit q(t) as n → ∞.
Taking the limit of the recursion relations as n→∞, we find that q2(t) = t,
and since q(t) ≥ 0, we have q(t) =

√
t.

According to Dini’s theorem, a monotone increasing sequence of contin-
uous functions that converges pointwise on a compact set to a continuous
function converges uniformly, so qn(t)→

√
t uniformly on [0, 1].

Finally, defining the polynomials pn : [−1, 1] → R by pn(t) = qn(t2), we
see that pn(t)→ |t| uniformly on [−1, 1].

Lemma 37. Let X be a compact metric space, and suppose that A ⊂ C(X)
is an algebra. If f, g ∈ A, then max{f, g},min{f, g} ∈ Ā.

Proof. Since

max{f, g} =
1

2
(f + g + |f − g|) , min{f, g} =

1

2
(f + g − |f − g|)

it is suffices to show that |f | ∈ Ā for every f ∈ A.
If f ∈ A, then f is bounded, so f(X) ⊂ [−M,M ] for some M > 0.

From Lemma 36, there exists a sequence (pn) of polynomials that converges
uniformly to |t| on [−1, 1]. Then pn(f/M) ∈ A and pn(f/M) → |f |/M
uniformly as n → ∞, since pn is uniformly continuous on [−1, 1]. It follows
that |f | ∈ Ā.

Definition 38. A metric space is separable if it has a countable dense subset.

Corollary 39. Let X ⊂ Rn be a closed, bounded set and P the set of
polynomials p : X → R. Then P is dense in (C(X), ‖ · ‖∞). Moreover, C(X)
is separable.

Proof. A closed, bounded set in Rn is compact, and the set P of polynomials
is a subalgebra of C(X) that contains the constant functions and separates
points, so P is dense in C(X). Any polynomial can be uniformly approxi-
mated on a bounded set by a polynomial with rational coefficients, and there
are countable many such polynomials, so C(X) is separable.

In particular, we have the following special case.

Theorem 40 (Weierstrass approximation). If f : [0, 1]→ R is a continuous
function and ε > 0, then there exists a polynomial p : [0, 1] → R such that
|f(x)− p(x)| < ε for every x ∈ [0, 1].
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