Continuous Functions on Metric Spaces

Math 201A, Fall 2016

1 Continuous functions

Definition 1. Let (X,dx) and (Y,dy) be metric spaces. A function f :
X — Y is continuous at a € X if for every € > 0 there exists d > 0 such that
dx(z,a) < 0 implies that dy (f(x), f(a)) < e.

In terms of open balls, the definition says that f (Bs(a)) C B(f(a)). In
future, X, Y will denote metric spaces, and we will not distinguish explicitly
between the metrics on different spaces.

Definition 2. A subset U C X is a neighborhood of a point a € X if
B(a) C U for some € > 0.

A set is open if and only if it is a neighborhood of every point in the
set, and U is a neighborhood of x if and only if U D G where G is an open
neighborhood of x. Note that slightly different definitions of a neighborhood
are in use; some definitions require that a neighborhood is an open set, which
we do not assume.

Proposition 3. A function f: X — Y is continuous at a € X if and only
if for every neighborhood V' C Y of f(a) the inverse image f~}(V) C X is a
neighborhood of a.

Proof. Suppose that the condition holds. If € > 0, then V = B.(f(a))
is a neighborhood of f(a), so U = f~!(V) is a neighborhood of a. Then
Bs(a) C U for some 6 > 0, which implies that f (Bs(a)) C Bc(f(a)), so f is
continuous at a.

Conversely, if f is continuous at a and V is a neighborhood of f(a),
then B, (f(a)) C V for some € > 0. By continuity, there exists § > 0 such
that f (Bs(a)) C Bc(f(a)), so Bs(a) C f~'(V), meaning that f~1(V) is a
neighborhood of a. 0



Definition 4. A function f: X — Y is sequentially continuous at a € X if
xn, — @ in X implies that f(z,) — f(a) in Y.

Theorem 5. A function f : X — Y is continuous at a if and only if it is
sequentially continuous at a.

Proof. Suppose that f is continuous at a. Let ¢ > 0 be given and suppose
that =, — a. Then there exists 6 > 0 such that d(f(z), f(a)) < € for
d(z,a) < ¢, and there exists N € N such that d(z,,a) < § for n > N.
It follows that d(f(x,), f(a)) < € for n > N, so f(z,) — f(a) and f is
sequentially continuous at a.

Conversely, suppose that f is not continuous at a. Then there exists
€0 > 0 such that for every n € N there exists z, € X with d(z,,a) < 1/n
and d(f(xy,), f(a)) > €. Then x, — a but f(z,) 4 f(a), so f is not
sequentially continuous at a. O

Definition 6. A function f : X — Y is continuous if f is continuous at
every x € X.

Theorem 7. A function f : X — Y is continuous if and only if f~*(V) is
open in X for every V that is open in Y.

Proof. Suppose that the inverse image under f of every open set is open. If
x € X and V C Y is a neighborhood of f(x), then VD> W where W is an
open neighborhood of f(z). Then f~!(W) is an open neighborhood of = and
YWy C f74V), so f~4V) is a neighborhood of x, which shows that f is
continuous.

Conversely, suppose that f : X — Y is continuous and V' C Y is open. If
x € f~4V), then V is an open neighborhood of f(z), so the continuity of f
implies that f~*(V) is a neighborhood of z. It follows that f~!(V) is open
since it is a neighborhood of every point in the set. O

Theorem 8. The composition of continuous functions is continuous

Proof. Suppose that f: X — Y and g: Y — Z are continuous, and go f :
X — Z is their composition. If W C Z is open, then V = g~ (W) is open,
so U = f~Y(V) is open. It follows that (go f)~'(W) = f~! (¢~ (W)) is open,
so g o f is continuous. O

Theorem 9. The continuous image of a compact set is compact.



Proof. Suppose that f : X — Y is continuous and X is compact. If {G,, :
« € I} is an open cover of f(X), then {f~1(G,) : a € I} is an open cover of
X, since the inverse image of an open set is open. Since X is compact, it has
a finite subcover {f71(G,,) :i=1,2,...,n}. Then {G,, :i=1,2,...,n}is
a finite subcover of f(X), which proves that f(X) is compact. O

2 Uniform convergence

A subset A C X is bounded if A C Bg(x) for some (and therefore every)
x € X and some R > 0. Equivalently, A is bounded if

diam A = sup {d(z,y) : z,y € A} < 0.
Definition 10. A function f: X — Y is bounded if f(X) C Y is bounded.

Definition 11. A sequence (f,,) of functions f,, : X — Y converges uniformly
to a function f : X — Y if for every ¢ > 0 there exists NV € N such that
n > N implies that d (f,(z), f(z)) < e for all z € X.

Unlike pointwise convergence, uniform convergence preserves bounded-
ness and continuity.

Proposition 12. Let (f,,) be a sequence of functions f, : X — Y. If each
fn is bounded and f,, — f uniformly, then f: X — Y is bounded.

Proof. By the uniform convergence, there exists n € N such that
d(fa(z), f(x)) <1  forallz e X.
Since f, is bounded, there exists y € Y and R > 0 such that
d(fu(z),y) <R  forallze X.
It follows that
A(F(@),9) < A(F@), ful@)) + d(fal@)y) S R+1 forall z € X,
meaning that f is bounded. O]

Theorem 13. Let (f,) be a sequence of functions f,, : X — Y. If each f, is
continuous at a € X and f,, — f uniformly, then f : X — Y is continuous
at as.



Proof. Let a € X. Since (f,) converges uniformly to f, given € > 0, there
exists n € N such that

d(fnl2), f(2)) <

forall x € X,

Wl ™

and since f,, is continuous at a, there exists 6 > 0 such that
d(fo(@), fa(a)) < % if d(x,a) < 6.
If d(z,a) < 0, then it follows that

d(f(x), f(a)) < d(f(x), fu(2)) + d (ful2), fn(a)) + d (fula), fa)) <,

which proves that f is continuous at a. [

Since uniform convergence preserves continuity at a point, the uniform
limit of continuous functions is continuous.

Definition 14. A sequence (f,) of functions f, : X — Y is uniformly
Cauchy if for every € > 0 there exists N € N such that m,n > N implies
that d (f. (), fu(x)) < € for all x € X.

A uniformly convergent sequence of functions is uniformly Cauchy. The
converse is also true for functions that take values in a complete metric space.

Theorem 15. Let Y be a complete metric space. Then a uniformly Cauchy
sequence (f,) of functions f, : X — Y converges uniformly to a function
f: X—>Y.

Proof. The uniform Cauchy condition implies that the sequence (f,(x)) is
Cauchy in Y for every x € X. Since Y is complete, f,(z) = f(x) asn — oo
for some f(z) € Y.

Given € > 0, choose N € N such that for all m,n > N we have

d(fm(x), fu(z)) <€ for all x € X.
Taking the limit of this inequality as m — oo, we get that
d(f(z), fulz)) <€ forall z € X

for all n > N, which shows that (f,,) converges uniformly to f asn — co. [
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3 Function spaces

Definition 16. The metric space (B(X,Y),d) is the space of bounded
functions f : X — Y equipped with the uniform metric

doo(f, 9) = sup{d (f(2), g(x)) : v € X}.

It is straightforward to check that d., is a metric on B(X,Y’); in partic-
ular, doo(f,g) < oo if f, g are bounded functions.

Theorem 17. Let Y be a complete metric space. Then (B(X,Y),d..) is a
complete metric space.

Proof. If (f,) is a Cauchy sequence in B(X,Y), then (f,) is uniformly
Cauchy, so by Theorem 15 it converges uniformly to a function f: X — Y.
By Proposition 12, f € B(X,Y), so B(X,Y) is complete. O

Definition 18. The space C(X,Y’) is the space of continuous functions f :
X =Y, and (Cy(X,Y),ds) is the space of bounded, continuous functions
f X — Y equipped with the uniform metric d..

Theorem 19. Let X be a metric space and Y a complete metric space.
Then (Cy(X,Y),ds) is a complete metric space.

Proof. By Theorem 13, Cp,(X,Y) is a closed subspace of the complete metric
space B(X,Y), so it is a complete metric space. O

4 Continuous functions on compact sets

Definition 20. A function f : X — Y is uniformly continuous if for ev-
ery € > 0 there exists § > 0 such that if z,y € X and d(z,y) < ¢, then

d(f(z), f(y)) <e

Theorem 21. A continuous function on a compact metric space is bounded
and uniformly continuous.

Proof. 1f X is a compact metric space and f : X — Y a continuous function,
then f(X) is compact and therefore bounded, so f is bounded.
Let € > 0. For each a € X, there exists d(a,€) > 0 such that

d(f(z), fla)) < for all x € X with d(z,a) < é(a,e€).



Then {Bg(aﬁ)(a) ta € X} is an open cover of X, so by the Lebesgue covering
lemma, there exists n > 0 such that for every € X there exists a € X with
B, (x) C Bsa,)(a). Hence, d(x,y) < n implies that x,y € Bs.¢(a), so

d(f(x), f(y) < d(f(x), fla)) +d(f(a), fy)) <e

which shows that f is uniformly continuous. m
For real-valued functions, we have the following basic result.

Theorem 22 (Weierstrass). If X is compact and f : X — R is continuous,
then f is bounded and attains its maximum and minimum values.

Proof. The image f(X) C R is compact, so it is closed and bounded. It
follows that M = supy f < oo and M € f(X). Similarly, infx f € f(X). O

5 The Arzela-Ascoli theorem

Definition 23. A family of functions 7 C C(X,Y) is equicontinuous if for
every a € X and € > 0, there exists ¢ > 0 such that if z € X and d(z,a) < 9,
then d (f(z), f(a)) < € for every f € F.

Definition 24. A family of functions F C C(X,Y) is uniformly equicon-
tinuous if for every € > 0, there exists 6 > 0 such that if z,y € X and
d(z,y) <0, then d (f(z), f(y)) < € for every f € F.

Theorem 25. If X is a compact metric space and F C C(X,Y) is equicon-
tinuous, then F is uniformly equicontinuous.

Proof. Let F C C(X,Y) be equicontinuous, and suppose that ¢ > 0. For
each a € X, there exists d(a, €) > 0 such that if z € X and d(z,a) < §(a,¢),
then d (f(z), f(a)) < €/2 for every f € F. Then {Bjqe(a) : a € X} is
an open cover of X, so by the Lebesgue covering lemma there exist n > 0
such that for every x € X we have B, (z) C By, (a) for some a € X. If
d(x,y) <, then z,y € Bj(,e(a), so

d(f(x), f(y) < d(f(x), f(a)) +d(f(a), f(y)) <e  forevery f e F,

which shows that F is uniformly equicontinuous. O]



For simplicity, we now specialize to real-valued functions. In that case,
we write C(X) = C(X,R). If X is compact, then C(X) equipped with
the sup-norm ||f||cc = sup,cx |f(z)|, and the usual pointwise definitions of
vector addition and scalar multiplication, is a Banach space.

Definition 26. A family of functions F C C(X) is pointwise bounded if for
every x € X there exists M > 0 such that |f(z)] < M for all f € F.

Definition 27. A subset A C X is of a metric space X is precompact (or
relatively compact) if its closure A is compact.

Lemma 28. Let X be a complete metric space. A subset A C X is precom-
pact if and only if it is totally bounded.

Proof. If A is precompact, then the compact set A is totally bounded, so
A C A is totally bounded.

Conversely, suppose that A is totally bounded. If € > 0, then A has a
finite (¢/2)-net F, and every z € A belongs to B, s(a) for some a € E. It
follows that E is a finite e-net for A, so A is totally bounded. Moreover, A
is a closed subset of a complete space, so A is complete, which shows that A
is compact and A is precompact. L]

Theorem 29 (Arzela-Ascoli). Let X be a compact metric space. A family
F C C(X) of continuous functions f : X — R is precompact with respect
to the sup-norm topology if and only if it is pointwise bounded and equicon-
tinuous. Furthermore, F is compact if and only if it is closed, pointwise
bounded, and equicontinuous.

Proof. Since C'(X) is complete, a subset is complete if and only if it is closed.
It follows that F is compact if and only if it is closed and totally bounded.
From Lemma 28, F is precompact if and only if it is totally bounded. Thus,
it suffices to prove that F is totally bounded if and only if it is pointwise
bounded and equicontinuous.

First, suppose that F is pointwise bounded and equicontinuous, and let
e > 0. We will construct a finite e-net for F.

The family F is equicontinuous and X is compact, so F is uniformly
equicontinuous, and there exists § > 0 such that

d(z,y) < 6 implies that | f(z) — f(y)| < % for all f € F.



Since X is compact, it has a finite 0-net F = {z; : 1 <i < n} such that

n

X = Bs(x).

i=1
Furthermore, since F is pointwise bounded,
M; =sup{|f(z;))|: f e F} <0 for each 1 <1i < n.

Let M = max{M; : 1 <i <n}. Then [-M, M] C R is compact, so it has a
finite (¢/6)-net F' = {y; € R: 1 < j < m} such that

=M, M) € | By

Here, B.s(y;) is an open interval in R of diameter €/3.
Let ® be the finite set of maps ¢ : E — F. For each ¢ € ®, define

Fo={f €F: f(x;) € Beyo (¢(x;)) fori=1,...,n}.

Since f(x;) € [-M, M] and {B.s(y;) : 1 < j < m} covers [—=M, M], we have

F=]JF

pcd

Let f,g € Fs. Then for each x; € E, we have f(x;),g(x;) € Bess(y;) for
some y; € I, so

7)) = ()] < 5.

Furthermore, if x € X, then = € Bs(x;) for some z; € F, so d(x,z;) < d, and
the uniform equicontinuity of F implies that

[f (@) = g(@)| < [f (@) = flao)| + [f(2:) — g(z:)| + [g(:) — g(z)] <e.

Thus, ||f — g|l« < €, so the diameter of F, is less than €, and Fy C B.(f5)
for some fy4 € F. Hence,

Fc|J Bt

ol

is totally bounded.



Conversely, suppose that F C C'(X) is precompact. Then F is bounded,
so there exists M > 0 such that || f||.c < M for all f € F, which implies that
F is pointwise (and, in fact, uniformly) bounded.

Moreover, F is totally bounded, so given € > 0, there exists a finite (€/3)-
net £ ={f;:1<i<n}for F. Each f; : X — R is uniformly continuous, so
there exists ¢; > 0 such that d(z,y) < ¢; implies that |fi(z) — fi(y)| < €/3.
Let 0 = min{d;, : 1 < ¢ < n}. If f € F, then ||f — fill < €/3 for some
fi € E, so d(x,y) < 0 implies that

|f(x) = FW)l < 1f(2) = filz)| + [fi(z) = fily)| + [fily) = F(y)| <e
meaning that F is uniformly equicontinuous. [

This result, and the proof, also applies to complex-valued functions in
C(X,C), vector-valued functions in C'(X,R"), and — with a stronger hy-
pothesis — to functions that take values in a complete metric space Y: If
X is compact, then F C C(X,Y) is precompact with respect to the uni-
form metric d., if and only if F is equicontinuous and pointwise precompact,
meaning that the set {f(z) : f € F} is precompact in Y for every x € X.

6 The Peano existence theorem

As an application of the Arzela-Ascoli theorem, we prove an existence result
for an initial-value problem for a scalar ODE. (Essentially the same proof
applies to systems of ODEs.)

Theorem 30. Suppose that f: R xR — R is continuous and ug € R. Then
there exists T" > 0 such that the initial-value problem

du
E = f(u’ t)7
u(0) = g

has a continuously differentiable solution u : [0, 7] — R.

Proof. For each h > 0, construct an approximate solution wuy : [0,00) — R
as follows. Let ¢, = nh and define a sequence (u,,)>°, recursively by

Up+1 = Up + hf (uny tn) .



Define uy(t) by linear interpolation between u,, and w1, meaning that
(t B tn)
h

Choose L, T} > 0, and let

uh(t) = Uy +

(Upg1 — Up) for ¢, <t <t,i1.

Ry ={(z,t) eR*: |z —up| < Land 0 < t < T1}.
Then, since f is continuous and R; is compact,

M= sup |f(z,t)] <oo.
(z,t)ERy

If (ug,ty) € Ry for every 0 < k <n — 1, then

—_

n—1

|un_u0| < |uk+1_uk| :hZ|f(ukatk)| SMtn
0 k=0

3

B
Il

Thus, (un,t,) € Ry so long as Mt, < L and t,, < Tj. Let

) L
T:mln{TI,M}, N =

)

=

and define R C R; by
R={(z,t) eR*: |z —up| < Land 0<t <T}.
Then it follows that (u,,t,) € Rif 0 <t, <T and 0 <n < N. Moreover,
[tns1 — Un| = h|f(un, )| < Mh for every 0 <n < N.
It is clear that the linear interpolant w, then satisfies
lun(s) — up(t)] < M|s —t| for every 0 < s,t <T.

To show this explicitly, suppose that 0 < s <t < T, t,, < s < t,ne1, and
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t, <t <t,i1. Then

n—1

[un(t) = un(s)] < Jun(t) —un(ta)l + Y lun(tsr) = un(t)]

k=m+1
+ un(t m+1) — up(s)]

< (t—t) |f (tns tn |+hZ £ (un )|

k=m+1
+ (tmgr = 8) [f (tm, tn)|
< M [(t —tn) + (tn — tmsr) + (Emar — 5)]
< M|t — s

In addition, |up(t)] < L for ¢t € [0,T].

By the Arzela-Ascoli theorem, the family {uy, : h > 0} is precompact in
C([0,T7), so we can extract a subsequence (up,;)52; such that h; — 0 and
up, — w uniformly to some u € C([0,77) as j — oo.

To show that u is a solution of the initial-value problem, we note that,
by the fundamental theorem of calculus, u € C*([0,T]) is a solution if and
only if u € C(]0,T]) and u satisfies the integral equation

t):uo—i-/tf(u(s),s)ds for0 <t <T.
0

Let xjo,q be the characteristic function of the interval [0, ], defined by

1 if0<s<t
IO P

Then the piecewise-linear approximation wuy, satisfies the equation

uh(t) = Ug + Z / o X[O,t](s)f (Uh(tk), tk) ds.
k=0 *tk

Let € > 0. Since f : R — R is continuous on a compact set, it is uniformly
continuous, and there exists 0 > 0 such that

|t —y| < M§ and |s — t| < 6 implies that |f(z,s) — f(y,t)| < ¢€/T.
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For 0 < h < ¢ and t;, < s < tgy1, we have |up(s) — up(ty)| < M and
|s — tg| < d,s0 for 0 <t < T we get that

—Uo—/f up(s

/ o () 1 (Cun(s), ) — F (un(t)s )] d

=0
N-1

IA
il 2

€ tk+1
<7 Z/ X0, (5) ds
=0
<€
Thus,
— Uy — / f (un(s),s) ds — 0 uniformly on [0,7] as h — 0.

Since uy; — w uniformly as j — oo, it follows that

t
U —i—/ [ (un,(s),s) ds — uf(t) uniformly on [0,7] as j — 0.
0
However, the uniform convergence uj,, — u and the uniform continuity of
[ imply that f(us,(t),t) — f(u(t),t) uniformly. Then, since the Riemann

integral of the limit of a uniformly convergent sequence of Riemann-integrable
functions is the limit of the Riemann integrals, we get that

u0+/0tf(uhj(s),s) ds%uo—i-/otf(u(s),s) ds asj— oo

for each t € [0, 7. Hence, since the limits must be the same,

ut):uo—l—/otf(u(s) s) ds

so u € C*([0,T]) is a solution of the initial-value problem. O

7 The Stone-Weierstrass theorem

Definition 31. A subset A C X is dense in X if A = X.
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Definition 32. A family of functions A C C(X) is an algebra if it is a linear
subspace of C'(X) and f, g € A implies that fg € A.

Here, fg is the usual pointwise product, (fg)(x) = f(z)g(x).

Definition 33. A family of functions F C C(X) separates points if for every
pair of distinct points x,y € X there exists f € F such that f(z) # f(y).

A constant function f : X — R is a function such that f(z) = ¢ for all
x € X and some c € R.

Theorem 34 (Stone-Weierstrass). Let X be a compact metric space. If
A C C(X) is an algebra that separates points and contains the constant
functions, then A is dense in (C(X), || - [|oo)-

Proof. Suppose that f € C(X) and let ¢ > 0. By Lemma 35, for every
pair of points y,z € X, there exists g,. € A such that g,.(y) = f(y) and

9y=(2) = f(2)-
First, fix y € X. Since f — g,. is continuous and (f — g,.)(z) = 0, for
each z € X there exists d(z) > 0 such that

gy-(x) < f(x) +e  forall z € Bs)(2).

The family of open balls {Bs.)(2) : 2 € X} covers X, so it has a finite
subcover {By,(z;) : 1 < i < n} since X is compact. By Lemma 37, the
function

gy = min{g,.. : 1 <i<n}

belongs to A. Moreover, g,(y) = f(y) and
gy(z) < f(z)+e foralzeX.

Next, consider g,. Since f — g, is continuous and (f — g,)(y) = 0, for
each y € Y there exists d(y) > 0 such that

gy(z) > f(z) —€ for all @ € By (y).

Then {Bsq)(y) : y € X} is an open cover of X, so it has a finite subcover
{Bs(y,)(y;) : 1 <j <m}. By Lemma 37, the function

g =max{g,, : 1 <j<m}
belongs to .A. Furthermore,
flx) —e<g(z) < f(x)+e foralzelX,
s0 ||f — gllso < €, which shows that A is dense in C'(X). O
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To complete the proof of the Stone-Weierstrass theorem, we prove several
lemmas.

Lemma 35. Let A C C(X) be a linear subspace that contains the constant
functions and separates points. If f € C(X) and y,z € X, then there exists

gy. € A such that g,.(y) = f(y) and g,.(2) = f(2).

Proof. Given distinct points y, z € X and real numbers a, b € R, there exists

h € A with h(y) # h(z). Then g € A defined by
h(z) — h(y)}
h(z) = h(y)

satisfies g(y) = a, g(z) = b. If y # z, choose g, as above with a = f(y) and
b= f(z);if y = 2, choose g,, = f. ]

g(x):a+(b—a)[

The next lemma is a special case of the Weierstrass approximation theo-
rem.

Lemma 36. There is a sequence (p,) of polynomials p,, : [—1,1] — R such
that p,(t) — [t| as n — oo uniformly on [—1, 1].

Proof. Define a sequence of polynomials ¢, : [0,1] — R by the recursion
relation

G () = ault) + 5 (= 20) . ao(t) =0

We claim that for every n € N, we have
Go1(t) < qu(t) <Vt forallte|0,1].

Suppose as an induction hypothesis that this inequality holds for some
n € N. Then ¢,41(t) > ¢,(t) and

> 0.

50 qn(t) < gn1(t) < V/E. Moreover, qi(t) = t/2, so qo(t) < qi(t) < V1, and
the inequality follows by induction.
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For each t € [0, 1] the real sequence (g,(t)) is monotone increasing and
bounded from above by 1, so it converges to some limit ¢(¢) as n — oc.
Taking the limit of the recursion relations as n — oo, we find that ¢?(t) = t,
and since q(t) > 0, we have q(t) = V/t.

According to Dini’s theorem, a monotone increasing sequence of contin-
uous functions that converges pointwise on a compact set to a continuous
function converges uniformly, so g,(t) — v/t uniformly on [0, 1].

Finally, defining the polynomials p, : [=1,1] — R by p,(t) = ¢.(t?), we
see that p,(t) — |t| uniformly on [—1,1]. O

Lemma 37. Let X be a compact metric space, and suppose that AcC C(X)
is an algebra. If f,g € A, then max{f, g}, min{f, g} € A.

Proof. Since

(f+g—1f—4)

DN | —

max{f.g} =5 (F+g+1f —gl).  min{f.g} =

it is suffices to show that |f| € A for every f € A.

If f € A, then f is bounded, so f(X) C [-M,M] for some M > 0.
From Lemma 36, there exists a sequence (p,,) of polynomials that converges
uniformly to |t| on [—1,1]. Then p,(f/M) € A and p,(f/M) — |f|/M
uniformly as n — oo, since p,, is uniformly continuous on [—1,1]. It follows

that |f| € A. O
Definition 38. A metric space is separable if it has a countable dense subset.

Corollary 39. Let X C R” be a closed, bounded set and P the set of
polynomials p : X — R. Then P is dense in (C(X), || - ||s). Moreover, C'(X)
is separable.

Proof. A closed, bounded set in R™ is compact, and the set P of polynomials
is a subalgebra of C'(X) that contains the constant functions and separates
points, so P is dense in C'(X). Any polynomial can be uniformly approxi-
mated on a bounded set by a polynomial with rational coefficients, and there
are countable many such polynomials, so C'(X) is separable. ]

In particular, we have the following special case.

Theorem 40 (Weierstrass approximation). If f: [0,1] — R is a continuous
function and € > 0, then there exists a polynomial p : [0,1] — R such that
|f(z) — p(x)| < e for every z € [0, 1].
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