1 Linear functionals on Hilbert spaces

- **Linear functionals.** A bounded linear function on a complex Hilbert space \mathcal{H} is a bounded scalar-valued linear map $\phi : \mathcal{H} \to \mathbb{C}$. (We replace \mathbb{C} by \mathbb{R} for real spaces.)

- **Dual space.** The space of bounded linear functionals on \mathcal{H} is the topological dual space of \mathcal{H}, denoted \mathcal{H}^*. The norm of $\phi : \mathcal{H} \to \mathbb{C}$ is
 \[\|\phi\|_{\mathcal{H}^*} = \sup_{x \neq 0} \left(\frac{|\phi(x)|}{\|x\|} \right) = \sup_{\|x\|=1} |\phi(x)| \]

- **Reisz representation theorem.** If $\phi \in \mathcal{H}^*$ then there is a unique $x \in \mathcal{H}$ such that
 \[\phi(y) = \langle x, y \rangle \quad \text{for every } y \in \mathcal{H}. \]

 The mapping $J : \mathcal{H}^* \to \mathcal{H}$ defined by $J : \phi \mapsto x$ is a conjugate-linear (i.e. $J(\lambda \phi) = \overline{\lambda} J \phi$) isometric isomorphism of \mathcal{H}^* onto \mathcal{H}. Thus, using J, we may identify the dual space of a Hilbert space with the Hilbert space itself.

- **Weak convergence.** A sequence $\{x_n\}$ in \mathcal{H} converges weakly to $x \in \mathcal{H}$, written $x_n \rightharpoonup x$, if
 \[\langle x_n, y \rangle \to \langle x, y \rangle \quad \text{for every } y \in \mathcal{H}. \]

- **Norm properties of weak convergence.** If $x_n \to x$ as $n \to \infty$, then $\{\|x_n\| : n \in \mathbb{N}\}$ is bounded and
 \[\|x\| \leq \liminf_{n \to \infty} \|x_n\| \]
i.e. the norm is weakly lower semi-continuous. If
\[x_n \to x \text{ and } \|x_n\| \to \|x\| \]
then \(x_n \to x \) strongly (in norm).

- **Necessary and sufficient condition for weak convergence.** Let \(D \) be a dense subset of a Hilbert space \(\mathcal{H} \). Then \(x_n \to x \) in \(\mathcal{H} \) if and only if \(\{\|x_n\|\} \) is bounded and
\[\langle x_n, y \rangle \to \langle x, y \rangle \quad \text{for every } y \in D. \]

- **Banach-Alaoglu theorem.** The closed unit ball of a Hilbert space is weakly compact.

- **Minimization problems.** Let \(D \) be a weakly closed subset of a Hilbert space \(\mathcal{H} \). A real-valued function \(F : D \subset \mathcal{H} \to \mathbb{R} \) is weakly lower semi-continuous (wlsc) on \(D \) if
\[F(x) \leq \liminf_{n \to \infty} F(x_n) \]
for all weakly convergent sequences \(\{x_n\} \) in \(D \), where \(x_n \to x \) as \(n \to \infty \). If \(D \) is weakly closed and bounded and \(F \) is wlsc on \(D \), then \(F \) is bounded from below and attains its infimum on \(D \).

2 Bounded linear operators on a Hilbert space

- **Bounded operators.** A linear operator \(A : \mathcal{H} \to \mathcal{K} \) between Hilbert spaces \(\mathcal{H}, \mathcal{K} \) is bounded if its operator norm
\[\|A\| = \sup_{x \neq 0} \left(\frac{\|Ax\|_{\mathcal{K}}}{\|x\|_{\mathcal{H}}} \right) = \sup_{\|x\|_{\mathcal{H}} = 1} \|Ax\|_{\mathcal{K}} = \sup_{\|x\|_{\mathcal{H}} = 1, \|y\|_{\mathcal{K}} = 1} |\langle Ax, y \rangle_{\mathcal{K}}|. \]
is finite. The space of bounded linear maps from \(\mathcal{H}, \mathcal{K} \) is denoted \(\mathcal{B}(\mathcal{H}, \mathcal{K}) \). It is a Banach space when equipped with the operator norm. If \(\mathcal{H} = \mathcal{K} \), we write \(\mathcal{B}(\mathcal{H}, \mathcal{H}) = \mathcal{B}(\mathcal{H}) \).

- **Adjoint.** The (Hilbert-space) adjoint of an operator \(A \in \mathcal{B}(\mathcal{H}, \mathcal{K}) \) is the bounded operator \(A^* \in \mathcal{B}(\mathcal{K}, \mathcal{H}) \) such that
\[\langle Ax, y \rangle_{\mathcal{K}} = \langle x, A^*y \rangle_{\mathcal{H}} \quad \text{for all } x \in \mathcal{H} \text{ and all } y \in \mathcal{K}. \]
• The algebra $B(H)$. The Banach space $B(H)$ is a C^*-algebra with respect to the composition product and the adjoint operation:

$$
\|AB\| \leq \|A\|\|B\|, \quad A^{**} = A, \quad (AB)^* = B^*A^*.
$$

The commutator of $A, B \in B(H)$ is the operator $[A, B] \in B(H)$ defined by $[A, B] = AB - BA$.

• Kernel-range theorem. If $A : \mathcal{H} \to \mathcal{H}$ is a bounded linear operator on a Hilbert space \mathcal{H}, then the kernel of A

$$
\ker A = \{x \in \mathcal{H} : Ax = 0\}
$$

is a closed linear subspace of \mathcal{H}, and the range of A

$$
\text{ran } A = \{y \in \mathcal{H} : y = Ax \text{ for some } x \in \mathcal{H}\}
$$

is a linear subspace of \mathcal{H}, which may or may not be closed. We always have

$$
\mathcal{H} = \text{ran } A \oplus \ker A^*.
$$

• Self-adjoint operators. A bounded linear operator $A : \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} is self-adjoint if $A^* = A$, meaning that

$$
\langle Ax, y \rangle = \langle x, Ay \rangle \quad \text{for all } x, y \in \mathcal{H}.
$$

• Sesquilinear forms. A bounded linear operator $A : \mathcal{H} \to \mathcal{H}$ defines a sesquilinear form $a : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ (meaning that a is conjugate-linear in the first argument and linear in the second argument) by

$$
a(x, y) = \langle x, Ay \rangle.
$$

If A is self-adjoint, then $a(x, y) = \overline{a(y, x)}$, $a(x, x) \in \mathbb{R}$, and

$$
\|A\| = \sup_{x \neq 0} \frac{\|\langle x, Ax \rangle\|}{\|x\|^2}.
$$

• Normal operators. A bounded linear operator $A : \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} is normal if A^*, A commute, meaning that

$$
A^* A = AA^*.
$$

Self-adjoint and unitary operators on \mathcal{H} are normal.
• **Unitary operators.** An operator $U \in \mathcal{B}(\mathcal{H}, \mathcal{K})$ is unitary if
\[
U^*U = I_{\mathcal{H}}, \quad UU^* = I_{\mathcal{K}}.
\]
In that case, U maps any orthonormal basis of \mathcal{H} to an orthonormal basis of \mathcal{K}, and preserves inner-products,
\[
\langle Ux, Uy \rangle_{\mathcal{K}} = \langle x, y \rangle_{\mathcal{H}} \quad \text{for all } x, y \in \mathcal{H},
\]
so U defines an isometric isomorphism of \mathcal{H} onto \mathcal{K}.

• **Orthogonal projections.** An orthogonal projection on a Hilbert space \mathcal{H} is a bounded linear operator $P \in \mathcal{B}(\mathcal{H})$ such that $P^2 = P$ (projection) and $P^* = P$ (self-adjoint or orthogonal).

• **Projection theorem.** Every orthogonal projection P on \mathcal{H} gives a direct sum decomposition
\[
\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^\perp, \quad \mathcal{M} = \text{ran } P, \quad \mathcal{M}^\perp = \text{ker } P
\]
where \mathcal{M} is a closed linear subspace of \mathcal{H}. Conversely, every closed subspace $\mathcal{M} \subset \mathcal{H}$ is associated with an orthogonal projection in this way.