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The heat equation on a circle

We consider the diffusion of heat in an insulated circular ring. We let
t ∈ [0,∞) denote time and x ∈ T a spatial coordinate along the ring. After a
suitable non-dimensionalization, the temperature u(x, t) of the ring satisfies
the following initial value problem:

ut = uxx x ∈ T, t > 0,

u(x, 0) = f(x) x ∈ T.

Here, f : T → R is a given initial temperature distribution. The PDE
ut = uxx is called the heat, or diffusion equations; in several space-dimensions
it is ut = ∆u.

Our aim is to solve for u(x, t) when t > 0. In order to state a rigorous
result, we first formulate the problem more precisely as an evolution equation
in a Hilbert space.

Let U(t) = u(·, t) denote the temperature distribution at time t ≥ 0.
We assume this to be at least square-integrable, so that U : [0,∞) → L2(T).
Thus, instead of regarding the temperature u(x, t) as a scalar-valued function
u of two independent variables (x, t), we regard it as a vector-valued function
U of a single variable t whose value U(t) is a function of x.

We then write the PDE ut = uxx as an evolution equation for U of the
form

dU

dt
= AU.

Here, as we will explain, the time-derivative dU/dt is defined in an L2-sense,
and A = ∂2

x.
First, consider the case of a function U : [0,∞) → H that takes values

in a Hilbert space H. We denote the norm on H by ‖ · ‖. We say that U is
continuous on [0,∞) if

lim
h→0

‖U(t + h)− U(t)‖ = 0

for all t ∈ [0,∞), where the right-hand limit h → 0+ is understood if t = 0.
We denote the space of such continuous functions by C ([0,∞);H).
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We say that U is continuously differentiable on [0,∞), with derivative

dU

dt
= V ∈ C ([0,∞);H) ,

if

lim
h→0

∥∥∥∥U(t + h)− U(t)

h
− V (t)

∥∥∥∥ = 0

for all t ∈ [0,∞), where the right-hand limit h → 0+ is understood if
t = 0. We denote the space of such continuously differentiable functions
by C1 ([0,∞);H).

The PDE ut = uxx implies that U and its time-derivative dU/dt ‘live’ in
different spaces. In order to ensure that dU/dt ∈ L2(T), we will require that
U ∈ H2(T). We define an unbounded linear operator A on L2(T) by

A : H2(T) ⊂ L2(T) → L2(T), Af = ∂2
xf,

where the spatial derivative ∂x is understood in a weak sense. That is, if
f ∈ H2(T) and n ∈ Z, then

(̂Af)(n) = −n2f̂(n),

where f̂(n) denotes the nth Fourier coefficient of f .
A precise formulation of the initial value problem (it is far from the only

one) is then the following: Given f ∈ H2(T), solve

dU

dt
= AU, U(0) = f, (1)

U ∈ C
(
[0,∞); H2(T)

)
∩ C1

(
[0,∞); L2(T)

)
. (2)

Theorem. There exists a unique solution of (1)–(2). This solution has the
property that U(t) ∈ C∞(T) for all t > 0. Moreover U(t) → f as t → ∞,
where

f =
1

2π

∫
T
f(x) dx

is the mean of the the initial data over the circle T; specifically,∥∥U(t)− f
∥∥ ≤ e−t

∥∥f − f
∥∥ .
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Proof. First, we prove that a solution is unique. Suppose that U1, U2 are
two solutions of (1)–(2). Then U = U1−U2 satisfies (1)–(2) with f = 0. The
continuity of the L2-inner product 〈·, ·〉 implies that ‖U‖2 : [0,∞) → [0,∞)
is a differentiable function, and

d

dt
‖U‖2 =

d

dt
〈U,U〉

=

〈
dU

dt
, U

〉
+

〈
U,

dU

dt

〉
= 〈AU,U〉+ 〈U,AU〉 .

By Parseval’s theorem,

〈A, AU〉 = −
∑
n∈R

n2
∣∣∣Û(n)

∣∣∣2 ≤ 0.

It follows that ‖U‖2(t) satisfies, for t ≥ 0,

d

dt
‖U‖2 ≤ 0, ‖U‖2(0) = 0.

Gronwall’s inequality then implies that ‖U‖2(t) = 0 for t ≥ 0, so U1 = U2,
and a solution is unique.

To prove the existence of a solution, we solve the equation by use of
Fourier series to get

U(t)(x) =
1√
2π

∑
n∈Z

f̂(n)e−n2teinx.

One can verify directly that this defines a solution of (1)–(2).
If t > 0, then ∑

n∈Z

n2ke−2n2t < ∞

for every k ∈ N, so U(t) ∈ Hk(T) for any f ∈ L2(T). The Sobolev imbedding
theorem then implies that U(t) ∈ C∞(T) whenever t > 0.

Finally, by Parseval’s theorem,

∥∥U(t)− f
∥∥2

=

∥∥∥∥∥ 1√
2π

∑
n6=0

f̂(n)e−n2teinx

∥∥∥∥∥
2
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=
∑
n6=0

∣∣∣f̂(n)
∣∣∣2 e−2n2t

≤ e−2t
∑
n6=0

∣∣∣f̂(n)
∣∣∣2

≤ e−2t
∥∥f − f

∥∥2
,

which proves the result. �

A diffusion semigroup

We may write the solution we have just obtained as

U(t) = T (t)f

where the bounded linear operator T (t) : L2(T) → L2(T) is defined, for t ≥ 0,
by

T̂ (t)f = e−n2tf̂(n).

Using the convolution theorem, for t > 0 we may write

T (t)f = gt ∗ f

where the function gt ∈ C∞(T) is defined by

gt(x) =
1

2π

∑
n∈Z

e−n2teinx.

The operator T (t) maps the solution of (1)–(2) at time 0 to the solution
at time t. As can be verified directly — because e−n2se−n2t = e−n2(s+t) — and
as follows from the fact that the evolution of U does not depend explicitly
on t, the function

T : [0,∞) → B
(
L2(T)

)
satisfies

T (s)T (t) = T (s + t) for s, t ≥ 0,

T (0) = I.

A family of operators {T (t) | t ≥ 0} with these properties is called a one-
parameter semi-group.
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For every f ∈ L2(T), the function U(t) = T (t)f is a continuous function
U : [0,∞) → L2(R), so {T (t) | t ≥ 0} is called a strongly continuous semi-
group. Note, however, that T (t)f is not differentiable with respect to t at
t = 0+ unless f ∈ H2(T), which explains the restriction on f in the previous
section.

The solution of an n× n system of ODEs for U : R → Cn,

dU

dt
= AU, U(0) = f,

where A : Cn → Cn, may be written as

U(t) = etAf.

Thus, we may regard T (t) as providing a definition of the operator-exponential

T (t) = et∂2
x .

From this perspective, we have an example of an operator-valued function
which satisfies the functional equation T (s)T (t) = T (s + t). In the scalar-
valued case, the solutions are the usual exponential functions T (t) = eat.

One fundamental difference between the finite-dimensional case and the
infinite-dimensional case considered here for the heat equation — where T (t)
is generated by an unbounded operator A which has arbitrarily large negative
eigenvalues, λn = −n2 — is that T (t) is defined only for t ≥ 0. This fact
is closely tied to the smoothing and irreversibility of the heat equation, and
explains why the operators T (t) form a semi-group, rather than a group. The
inverse of T (t) would be T (−t) if the equation could be solved backward in
time.
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