THE HEAT EQUATION
John K. Hunter
February 15, 2007

The heat equation on a circle

We consider the diffusion of heat in an insulated circular ring. We let
t € [0,00) denote time and x € T a spatial coordinate along the ring. After a
suitable non-dimensionalization, the temperature u(x,t) of the ring satisfies
the following initial value problem:

Ut = Ugy LEGT, t >0,
u(z,0) = f(x) zeT.

Here, f : T — R is a given initial temperature distribution. The PDE
Uy = Uy, is called the heat, or diffusion equations; in several space-dimensions
it is u; = Au.

Our aim is to solve for u(z,t) when ¢ > 0. In order to state a rigorous
result, we first formulate the problem more precisely as an evolution equation
in a Hilbert space.

Let U(t) = u(-,t) denote the temperature distribution at time t > 0.
We assume this to be at least square-integrable, so that U : [0, 00) — L*(T).
Thus, instead of regarding the temperature u(z, t) as a scalar-valued function
u of two independent variables (z,t), we regard it as a vector-valued function
U of a single variable ¢ whose value U(t) is a function of x.

We then write the PDE u; = u,, as an evolution equation for U of the
form

aUu
% —_— AU.
Here, as we will explain, the time-derivative dU/dt is defined in an L*-sense,
and A = 92.
First, consider the case of a function U : [0,00) — H that takes values
in a Hilbert space H. We denote the norm on H by || - ||. We say that U is

continuous on [0, c0) if
lim [[U(# +h) = U(1)[| = 0

for all ¢ € [0, 00), where the right-hand limit A~ — 07 is understood if ¢ = 0.
We denote the space of such continuous functions by C' ([0, 00); H).
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We say that U is continuously differentiable on [0, 00), with derivative

dU
if
. [ U@t+h)=U(t)
i h _V(t)H:O

for all t € [0,00), where the right-hand limit &~ — 0% is understood if
t = 0. We denote the space of such continuously differentiable functions
by C* ([0, 00); H).

The PDE u; = u,, implies that U and its time-derivative dU/dt ‘live’ in
different spaces. In order to ensure that dU/dt € L?(T), we will require that
U € H*(T). We define an unbounded linear operator A on L*(T) by

A HXT) C L*(T) — LX(T),  Af = 9%f,

where the spatial derivative 0, is understood in a weak sense. That is, if
f € H*(T) and n € Z, then

—

(Af)(n) = —n*f(n),

where f(n) denotes the nth Fourier coefficient of f.
A precise formulation of the initial value problem (it is far from the only
one) is then the following: Given f € H?(T), solve

%;:mz o) = f. (1)
U € C ([0,00); H*(T)) N C"* ([0, 00); L*(T)) . (2)

Theorem. There exists a unique solution of (1)-(2). This solution has the
property that U(t) € C*(T) for all ¢ > 0. Moreover U(t) — f as t — oo,

where )
= %/Tf(@ dx

is the mean of the the initial data over the circle T; specifically,

o) =7l < e |lf =7l



Proof. First, we prove that a solution is unique. Suppose that Uy, Uy are
two solutions of (1)-(2). Then U = U; — U, satisfies (1)—(2) with f = 0. The
continuity of the L?-inner product (-,-) implies that ||U]? : [0,00) — [0, o0)
is a differentiable function, and

d
dt<U U)

dU aU
- <%7U> * <U’%>

— (AU,U) + (U, AU).

a2
il

By Parseval’s theorem,

.2
(A, AU) = =32 U(n)) <0
neR
It follows that ||U]|?(t) satisfies, for t > 0,
d 2 2
D<o o =0

Gronwall’s inequality then implies that ||U]|?(¢t) = 0 for ¢ > 0, so U; = Us,
and a solution is unique.

To prove the existence of a solution, we solve the equation by use of
Fourier series to get

U(t)(z) = mzf

One can verify directly that this defines a solution of (1)—(2).

If t > 0, then
Z nZke 72n2t
neZ
for every k € N, so U(t) € H*(T) for any f € L*(T). The Sobolev imbedding
theorem then implies that U(t) € C°°(T) whenever t > 0.
Finally, by Parseval’s theorem,
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n#0
< K%EZfWﬁ
n#0
< =717

which proves the result. [

A diffusion semigroup

We may write the solution we have just obtained as

Ut) =T(t)f
where the bounded linear operator T'(t) : L*(T) — L*(T) is defined, for ¢ > 0,
by
T(t)f=e"f(n).

Using the convolution theorem, for ¢ > 0 we may write
Tt)f=g"*f
where the function ¢ € C*(T) is defined by

1 2,

t _ —n“t _inx

g'(x) = o Z e e,
neL

The operator T'(¢) maps the solution of (1)—(2) at time 0 to the solution

at time ¢. As can be verified directly — because e "s¢~"*t = ¢=n*(s+t) __ and

as follows from the fact that the evolution of U does not depend explicitly

on t, the function
T:[0,00) — B (Lz(T))

satisfies
T(s)T(t)=T(s+1) for s,t > 0,
T(0)=1.

A family of operators {T'(t) | t > 0} with these properties is called a one-
parameter semi-group.



For every f € L*(T), the function U(t) = T'(t)f is a continuous function
U :[0,00) — L*(R), so {T(t) | t > 0} is called a strongly continuous semi-
group. Note, however, that T'(t)f is not differentiable with respect to ¢ at
t =07 unless f € H?(T), which explains the restriction on f in the previous
section.

The solution of an n x n system of ODEs for U : R — C",

dU
— = AU U =
dt b (O> f?

where A : C" — C", may be written as
U(t) = e f.

Thus, we may regard T'(t) as providing a definition of the operator-exponential
T(t) = %,

From this perspective, we have an example of an operator-valued function
which satisfies the functional equation T'(s)T'(t) = T(s + t). In the scalar-
valued case, the solutions are the usual exponential functions T'(t) = .

One fundamental difference between the finite-dimensional case and the
infinite-dimensional case considered here for the heat equation — where T'()
is generated by an unbounded operator A which has arbitrarily large negative
eigenvalues, \, = —n? — is that T'(¢) is defined only for ¢ > 0. This fact
is closely tied to the smoothing and irreversibility of the heat equation, and
explains why the operators 7'(t) form a semi-group, rather than a group. The
inverse of T'(t) would be T'(—t) if the equation could be solved backward in
time.



