
Midterm: Solutions
Math 201B, Winter 2007

Problem 1. Suppose that λ ∈ C and λ /∈ Z. Prove that for every f ∈ L2(T)
there is a unique solution u ∈ H1(T) of the differential equation

iu′ + λu = f.

Solution.

• Computing Fourier coefficients, we see that u ∈ L2(T) is a solution if
and only if

i(in)ûn + λûn = f̂n.

This equation has a unique solution

ûn =
f̂n

λ− n
,

which is well-defined since λ /∈ Z.

• For λ /∈ Z there exists a constant C such that∣∣∣∣ n

λ− n

∣∣∣∣ ≤ C for all n ∈ Z.

It follows that if f ∈ L2(T), then

∑
n∈Z

n2 |ûn|2 =
∑
n∈Z

n2
∣∣∣f̂n

∣∣∣2
|λ− n|2

≤ C2
∑
n∈Z

∣∣∣f̂n

∣∣∣2 = C2‖f‖2
2 < ∞.

Hence, u ∈ H1(T).



Problem 2. If f ∈ L1(R), define a function f̂ : R → C by

f̂(ξ) =

∫
R

f(x)e−ixξ dx.

Prove that f̂ ∈ Cb(R), meaning that f̂ is bounded and continuous.

Solution.

• We have∣∣∣f̂(ξ)
∣∣∣ =

∣∣∣∣∫
R

f(x)e−ixξ dx

∣∣∣∣ ≤ ∫
R

∣∣f(x)e−ixξ
∣∣ dx =

∫
R
|f(x)| dx = ‖f‖1,

so f̂ is bounded, with
‖f‖∞ ≤ ‖f‖1.

• If ξ → ξ0, then, by the continuity of eiθ,

f(x)e−ixξ → f(x)e−ixξ0 pointwise for every x ∈ R.

Moreover, ∣∣f(x)e−ixξ
∣∣ ≤ |f(x)| ∈ L1(R).

The Lebesgue dominated convergence theorem therefore implies that

lim
ξ→ξ0

f̂(ξ) = lim
ξ→ξ0

∫
R

f(x)e−ixξ dx

=

∫
R

lim
ξ→ξ0

[
f(x)e−ixξ

]
dx

=

∫
R

f(x)e−ixξ0 dx

= f̂(ξ0),

so f̂ is continuous.

Remark. The function f̂ is the Fourier transform of f . In fact, f̂ ∈ C0(R)
if f ∈ L1(R), meaning that f̂(ξ) → 0 as |ξ| → ∞. This result, the Riemann-
Lebesgue lemma, follows from the density of C∞

c (R) in L1(R).



Problem 3. Suppose that {φn ∈ L2(R) | n ∈ N} is an orthonormal set of
functions in L2(R). For m, n ∈ N, define φm,n : R2 → C by

φm,n(x, y) = φm(x)φn(y).

Prove that {φm,n ∈ L2(R2) | m, n ∈ N} is an orthonormal set in L2(R2).

Solution.

• We have

〈φj,k, φm,n〉 =

∫
R2

φj,k(x, y)φm,n(x, y) dxdy

=

∫
R2

φj(x)φm(x)φk(y)φn(y) dxdy.

• Using Fubini’s theorem for non-negative functions, we get∫
R2

∣∣φj(x)φm(x)φk(y)φn(y)
∣∣ dxdy

=

∫
R

(∫
R

∣∣φj(x)φm(x)φk(y)φn(y)
∣∣ dx

)
dy

=

(∫
R

∣∣φj(x)φm(x)
∣∣ dx

) (∫
R

∣∣φk(y)φn(y)
∣∣ dy

)
By the Cauchy-Schwartz inequality, and the normalization of the φn,∫

R

∣∣φj(x)φm(x)
∣∣ dx ≤

(∫
R
|φj(x)|2 dx

)1/2 (∫
R
|φm(x)|2 dx

)1/2

= 1.

Hence, φj,kφm,n ∈ L1(R2), and we can apply Fubini’s theorem.

• Using Fubini’s theorem and the orthonormality of the φn in L2(R), we
compute that

〈φj,k, φm,n〉 =

∫
R2

φj(x)φm(x)φk(y)φn(y) dxdy

=

∫
R

(∫
R

φj(x)φm(x)φk(y)φn(y) dx

)
dy

= δj,m

∫
R

φk(y)φn(y) dy

= δj,mδk,m,

which shows that the φm,n are orthonormal in L2(R2).



Problem 4. Suppose that f, g ∈ L2(T). Prove that

‖f ∗ g‖∞ ≤ ‖f‖2 ‖g‖2,

where f ∗ g denotes the convolution of f , g and

‖f‖∞ = sup
x∈T

|f(x)|, ‖f‖2 =

(∫
T
|f(x)|2 dx

)1/2

.

Prove that f ∗ g ∈ C(T) is continuous.

Solution.

• By the Cauchy-Schwartz inequality,

|(f ∗ g)(x)| =

∣∣∣∣∫
T
f(x− y)g(y) dy

∣∣∣∣
≤

(∫
T
|f(x− y)|2 dy

)1/2 (∫
T
|g(y)|2 dy

)1/2

= ‖f‖2‖g‖2.

Taking the supremum of this inequality over x ∈ T, we get the result.

• Since the trigonometric polynomials are dense in L2(T), there are se-
quences (pn), (qn) of trigonometric polynomials such that

‖pn − f‖2 → 0, ‖qn − g‖2 → 0 as n →∞.

It follows that

‖(f ∗ g)− (pn ∗ qn)‖∞ ≤ ‖(f − pn) ∗ g‖∞ + ‖pn ∗ (g − qn)‖∞
≤ ‖f − pn‖2 ‖g‖2 + ‖pn‖2 ‖g − qn‖2

→ 0 as n →∞.

Hence, f ∗ g is the uniform limit of the continuous functions pn ∗ qn, so
f ∗ g is continuous.



Problem 5. Let M be the linear space of complex sequences (xn) of the
form (x1, x2, x3, . . . , xN , 0, 0, . . .) where xn ∈ C, xn = 0 for n > N , for some
N ∈ N, and

N∑
n=1

xn = 0.

What is the closure M of M in `2(N)? What is the orthogonal complement
M⊥ of M in `2(N)?

Solution.

• The closure of M is the whole space `2(N), so M⊥ = {0}.

• To show that M is dense in `2(N), suppose that

y = (y1, y2, y3, . . . , yN , 0, 0, . . .)

is any terminating complex sequence, with

N∑
n=1

yn = c.

For any K ∈ N, define x = (xn) by

xn =


yn if 1 ≤ n ≤ N ,
−c/K if N + 1 ≤ n ≤ N + K,
0 if n > N + K.

Then
N+K∑
n=1

xn = 0,

so x ∈ M .

• We compute that

‖x− y‖2 = K
|c|2

K2
=
|c|2

K
→ 0 as K →∞.

Therefore, the closure of M contains all terminating sequences. Since
the terminating sequences are dense in `2(N), we have M = `2(N).


