Problem Set 1 Math 201B, Winter 2007 Due: Friday, Jan 12

Problem 1. Suppose that X is a linear space with inner product (\cdot, \cdot) . If $x_n \to x$ and $y_n \to y$ as $n \to \infty$, prove that $(x_n, y_n) \to (x, y)$ as $n \to \infty$.

Problem 2. (a) Consider the linear space C([0, 1]) equipped with the L^1 -norm,

$$||f||_1 = \int_0^1 |f(x)| \, dx$$

Prove that there is no inner product (\cdot, \cdot) on C([0, 1]) such that

$$\|f\|_1 = \sqrt{(f,f)}$$

(b) Suppose that X is a normed linear space (over \mathbb{C}) whose norm $\|\cdot\|$ satisfies the parallelogram law. Define $(\cdot, \cdot) : X \times X \to \mathbb{C}$ by

$$(x,y) = \frac{1}{4} \left\{ \|x+y\|^2 - \|x-y\|^2 - i\|x+iy\|^2 + i\|x-iy\|^2 \right\}.$$

Prove that (\cdot, \cdot) is an inner product on X such that $||x|| = \sqrt{(x, x)}$.

Problem 3. Let M be a linear subspace of a Hilbert space \mathcal{H} . Prove that $M^{\perp\perp} = \overline{M}$.

Problem 4. Consider C([0, 1]) equipped with the sup-norm, and define the closed linear subspace

$$M = \left\{ g \in C([0,1]) \mid g(0) = 0, \int_0^1 g(x) \, dx = 0 \right\}.$$

Let $f \in C([0,1]) \setminus M$ be the function f(x) = x. Prove that

$$d(f, M) = \inf_{g \in M} ||f - g||_{\infty} = \frac{1}{2},$$

but that the infimum is not attained for any $g \in M$. (Meaning that there is no "closest" element to f in M.)

Problem 5. We denote the Hölder semi-norm with exponent 1/2 and the L^2 -norm of a function $f:[0,1] \to \mathbb{R}$ by

$$[f] = \sup_{x \neq y \in [0,1]} \frac{|f(x) - f(y)|}{|x - y|^{1/2}}, \qquad \|f\|_2 = \left(\int_0^1 |f(x)|^2 \, dx\right)^{1/2}.$$

We denote the sup-norm of f by $||f||_{\infty}$.

(a) If f is continuously differentiable on [0, 1], with derivative f', prove that

$$[f] \le \|f'\|_2.$$

HINT. Cauchy-Schwarz.

(b) Given R > 0, let

 $\mathcal{F} = \{ f : [0,1] \to \mathbb{R} \mid f \text{ is continuously differentiable}, \|f\|_2 \le R, \|f'\|_2 \le R \}$

Prove that \mathcal{F} is a precompact subset of C([0, 1]) equipped with the sup-norm.