Problem Set 2 Math 201B, Winter 2007 Due: Friday, Jan 19

Problem 1. Let $(x_n)_{n=1}^{\infty}$ be a sequence in a Banach space. Prove that the unordered sum

$$\sum_{n \in \mathbb{N}} x_n$$

converges if and only if the series

$$\sum_{n=1}^{\infty} x_n$$

converges unconditionally.

Problem 2. Suppose that the unordered sums

$$\sum_{\alpha \in A} x_{\alpha}, \qquad \sum_{\beta \in B} y_{\beta}$$

converge in a Hilbert space. Prove that

$$\left\langle \sum_{\alpha \in A} x_{\alpha}, \sum_{\beta \in B} y_{\beta} \right\rangle = \sum_{(\alpha, \beta) \in A \times B} \left\langle x_{\alpha}, y_{\beta} \right\rangle.$$

Problem 3. Let $\{e_{\alpha} \mid \alpha \in A\}$ be an orthonormal set in a Hilbert space \mathcal{H} . Define

$$\mathcal{M} = \left\{ \sum_{\alpha \in A} c_{\alpha} e_{\alpha} \mid c_{\alpha} \in \mathbb{C}, \ \sum_{\alpha \in A} |c_{\alpha}|^{2} < \infty \right\}.$$

Prove that \mathcal{M} is a closed linear subspace of \mathcal{H} .