Problem Set 3 Math 201B, Winter 2007 Due: Friday, Jan 26

Problem 1. Prove that an infinite-dimensional Hilbert space is a separable metric space if and only if it has a countable orthonormal basis.

Problem 2. Prove that if M is a dense linear subspace of a separable Hilbert space \mathcal{H} , then \mathcal{H} has an orthonormal basis consisting of elements in M.

Problem 3. Define the Legendre polynomials P_n by

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n.$$

(a) Compute the first four Legendre polynomials, $P_0(x)$, $P_1(x)$, $P_2(x)$, $P_3(x)$.

(b) Show that the Legendre polynomials are orthogonal in $L^2([-1,1])$.

(c) Show that the Legendre polynomials are obtained by Gram-Schmidt orthogonalization of the monomials $\{1, x, x^2, \ldots\}$ in $L^2([-1, 1])$. HINT. Show that $P_n(x)$ is orthogonal to x^m for m < n.

(d) Show that

$$\int_{-1}^{1} P_n(x)^2 \, dx = \frac{2}{2n+1}.$$

(e) Show that the Legendre polynomial P_n is an eigenfunction of the differential operator

$$L = -\frac{d}{dx} \left(1 - x^2\right) \frac{d}{dx}$$

with eigenvalue $\lambda_n = n(n+1)$, meaning that

$$LP_n = \lambda_n P_n.$$

(f) Compute the polynomial q(x) of degree 2 that is 'closest' to e^x on [-1, 1], in the sense that

$$\int_{-1}^{1} |e^{x} - q(x)|^{2} dx = \min\left\{\int_{-1}^{1} |e^{x} - f(x)|^{2} dx \mid f(x) = ax^{2} + bx + c\right\}.$$

Problem 4. Define the Hermite polynomials H_n by

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} \left(e^{-x^2} \right).$$

(a) Define

$$\phi_n(x) = e^{-x^2/2} H_n(x)$$

Show that $\{\phi_n \mid n = 0, 1, 2, ...\}$ is an orthogonal set in $L^2(\mathbb{R})$. (b) Show that the *n*th Hermite function ϕ_n is an eigenfunction of the linear operator

$$H = -\frac{d^2}{dx^2} + x^2$$

with eigenvalue

$$\lambda_n = 2n + 1.$$

HINT: Let

$$A = \frac{d}{dx} + x, \qquad A^* = -\frac{d}{dx} + x.$$

Show that

$$A\phi_n = 2n\phi_{n-1}, \quad A^*\phi_n = \phi_{n+1}, \quad H = AA^* - 1.$$

Remark. In quantum mechanics, H arises as the Hamiltonian operator of a simple harmonic oscillator, and ϕ_n is an eigenstate of the oscillator with energy proportional to λ_n . The operators A^* and A are called creation and annhibition operators: A^* maps a state with *n*-quanta to one with (n + 1)quanta, while A maps a state with *n*-quanta to one with (n - 1)-quanta.

Richard P. Feynman, Nobel Lecture, December 11, 1965:

I remember that when someone had started to teach me about creation and annihilation operators, that this operator creates an electron, I said, "how do you create an electron? It disagrees with the conservation of charge", and in that way, I blocked my mind from learning a very practical scheme of calculation.