Solutions: Problem Set 1
Math 201B, Winter 2007

Problem 1. Suppose that X is a linear space with inner product (-,-). If
x, — x and y, — y as n — oo, prove that (z,,y,) — (z,y) as n — oo.

Solution.

e Using the Cauchy-Schwarz and triangle inequalities, we have

[(zn — 2, 90)| + (2, Y — ¥

2z = || lyall + 2]l [lyn — yll

|n = 2l (lyn —yll + lyl)) + [z llyn =yl

2z — 2l lyn — yll + llzw — 2|l [lyll + ]| 1y —yll -

|(Zns yn) = (2,9)]

VAN VAR VARVAN

Since ||z, — z|| — 0, |lyn — y|| — 0 as n — oo, we see that

(Tn, Yn) — (z,y) as n — oo.



Problem 2. (a) Consider the linear space C([0,1]) equipped with the L'-

norm,
||f||1—/ f(@)] da.

Prove that there is no inner product (-,-) on C(][0, 1]) such that

1flle =V (/. f).

(b) Suppose that X is a normed linear space (over C) whose norm || - ||
satisfies the parallelogram law. Define (-,-) : X x X — C by

@y'——ww+wz!W—yW—W$+WW+W$—WW}
Prove that (+,-) is an inner product on X such that ||z| = /(z, ).
Solution.

e (a) Consider, for example, f(z) =1 and g(z) = 2z. Then

1fllh =1, gl =1,
while
! 1
Hf—gH1:/ 1 2efde = 3,
0
1
||f+g||1:/ (1+ 2x)dx = 2.
0
Thus
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so the norm does not satisfy the parallelogram law. Hence it is not
obtained from an inner product.

e (b) Note that we may write the expression for (-,-) as

3
IS i ety

k=0

»blt—\



It follows immediately from the definition that

(z,2) = [z|* >0, (y,2) = (z,y).
So the main thing we need to prove is that (x,y) is linear in y.
Using the parallelogram law, we find for any z,y,z € X that
|z +y + 26 z||" + ||z — g

= H (z+1i"2) + (v + i*2) ||2 + H (z+1i"2) — (y + zkz)HQ
2ot el 42 i
Multiplying this equation by i~*, summing the result over 0 < k < 3,
using the fact that 22:0 i~% = 0, and using the definition of (-,-), we

get
(z +y,22) = 2(z,2) + 2(y, 2).

Setting y = 0 in this equation, and using the fact immediate from the
definition that (0, z) = 0, we get (z,2z) = 2(x, z). It then follows that

(z+y,2)=(2,2) + (y,2) .

Since (y,z) = (x,y), we also get
(z,y+2) = (z,y) + (,2).
Repeated application of this result implies that for any m € N,
(x, my) = m (z,y).

It follows that for any m,n € N,

n <x %y) = (x,my) = m(z,y),

() -2y

SO



e Finally, using the density of the rationals in the reals, the continuity of
the norm, and the immediate properties

(z,—y) = —(z,y),  (x,3y) =i(z,y),

we conclude that
(@, \y) = Az, y)
for all A € C This proves that (-,-) defines an inner product.

Remark. According to P. Lax in Functional Analysis, this observation is
due to von Neumann.



Problem 3. Let M be a linear subspace of a Hilbert space H. Prove that
MY+ =M.

Solution.

o If z € M then (x,y) =0 for all y € M+ so x L M*. Tt follows that
M c M+

e Since Mt is an orthogonal complement, it is a closed linear subspace,
SO
M c M+

o If x € H then, by the projection theorem, we may write x = y+ 2z where
y € M, ze€ M+ If z € M+ then (x,2) =0, so (y,2) + (z,2) = 0.
Since M+ = Ml, we have (y,z) =0, so (z,2z) = 0. Hence z = 0 and
r =y € M. It follows that

M c M.
e Combining these results, we get M+ = M.

Remark. The same argument shows that if £ C H is any subset, then
E+L = [E], where [E] is the closed linear span of E.



Problem 4. Consider C([0,1]) equipped with the sup-norm, and define the
closed linear subspace

M ={g e 1) 190 =0, [ gto)de=o}.
Let f € C(]0,1]) \ M be the function f(x) = z. Prove that

. 1
d(f,M) = glgﬂg If =9l = 3

but that the infimum is not attained for any g € M. (Meaning that there is
no “closest” element to f in M.)

Solution.
e We consider real-valued functions for simplicity.

e We have for all x € [0, 1] that

flx)—g(x) < |If = 9lloo-

Integrating this equation with respect to x, we get

1
0

1
| f@de [ gla)de < if - gl
0

Hence, if f(x) =z and g € M so fol g(z)dx =0, then

1
—<|If = glle.
S <~ gl
It follows that d(f, M) > 1/2.
e For sufficiently small ¢ > 0, define the function

cw={ "k if0<az<o,
T =V a—1/2—¢ ifo<a<l,

where we choose —kd = 0 — 1/2 — € to ensure the continuity of ¢¢ at

z=20>0and )
1 1 1/1



to ensure that the integral of ¢¢ is zero. Explicitly,

2
sk 020
1/2+¢€ 2e

Then ¢ € M and || f —¢°||, =1/2+€¢ — 1/2as e — 07,
It follows that d(f, M) < 1/2, so d(f, M) =1/2.

Suppose, for contradiction, that the infimum is attained, and g € M is
such that ||f — gljcc = 1/2. Then

g(z) — f(x) > —% for all x € [0, 1].

Thus, writing

we see that h > 0.

Since fol g(z) dz = 0, we have

/Olh(x)dxzo.

However, since g(0) = 0, we have h(0) = 1/2. Since h is continuous
there is an interval [0, §] of width § > 0 on which A > 1/4. Hence, since
h is nonnegative,

1 1 )
/ h(z)dz > / h(z)dx > — > 0.
0 0 4

This contradiction proves that the infimum is not attained.



Problem 5. We denote the Hélder semi-norm with exponent 1/2 and the
L?-norm of a function f :[0,1] — R by

f= sup LD =TWI |!f\|z=(/01\f(x)|2dw)1/2-

eyl |7 — Y|

We denote the sup-norm of f by || f]|sc-
(a) If f is continuously differentiable on [0, 1], with derivative f’, prove that

1< (1]l
(b) Given R > 0, let
F={f:]0,1] = R | f is continuously differentiable, || f|l2 < R, ||f'l[ls < R}
Prove that F is a precompact subset of C'([0, 1]) equipped with the sup-norm.

Solution.

e (a) By the fundamental theorem of calculus,
f@) - f) = [ £y
Y

The Cauchy-Schwarz inequality implies that

/yxf’(t)dt' _ /yxl-f’(t)dt’
()" (o)
oo ([ P ) "

= y["2)| ]|
Hence for all 0 < x # y < 1, we have

|f(z) — f(y)|
|z —y|1/?
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< £l

Taking the supremum over = # y, we get [f] < || f/||2.



e (b) Given ¢ > 0, let § = €2/R?. If f € F and |v — y| < 4, then
|f(z) — f(y)| <€, so the family F is equicontinuous.

o It follows from (a) that if f € F, then

[f(z) = fWI <R

for all z,y € [0,1]. Hence,

[f@)] <[f(@) = I+ W) < B+ 1Fw)l.

Integrating this equation over [0, 1] with respect to y, we get for every
x € [0, 1] that

@) < R+ / ) dy.

By the Cauchy-Schwarz inequality if f € F, then

[wrar= [ s ([ 12dy)1/2 (/Ollf(y)|2dy)1/2 <r

Thus, |f(z)] < 2R, s0 ||f|le < 2R and F is bounded.

e The Arzela-Ascoli theorem implies that F is a precompact subset of

([0, 1)).



