
Solutions: Problem Set 1
Math 201B, Winter 2007

Problem 1. Suppose that X is a linear space with inner product (·, ·). If
xn → x and yn → y as n →∞, prove that (xn, yn) → (x, y) as n →∞.

Solution.

• Using the Cauchy-Schwarz and triangle inequalities, we have

|(xn, yn)− (x, y)| ≤ |(xn − x, yn)|+ |(x, yn − y)|
≤ ‖xn − x‖ ‖yn‖+ ‖x‖ ‖yn − y‖
≤ ‖xn − x‖ (‖yn − y‖+ ‖y‖) + ‖x‖ ‖yn − y‖
≤ ‖xn − x‖ ‖yn − y‖+ ‖xn − x‖ ‖y‖+ ‖x‖ ‖yn − y‖ .

Since ‖xn − x‖ → 0, ‖yn − y‖ → 0 as n →∞, we see that

(xn, yn) → (x, y) as n →∞.



Problem 2. (a) Consider the linear space C([0, 1]) equipped with the L1-
norm,

‖f‖1 =

∫ 1

0

|f(x)| dx.

Prove that there is no inner product (·, ·) on C([0, 1]) such that

‖f‖1 =
√

(f, f).

(b) Suppose that X is a normed linear space (over C) whose norm ‖ · ‖
satisfies the parallelogram law. Define (·, ·) : X ×X → C by

(x, y) =
1

4

{
‖x + y‖2 − ‖x− y‖2 − i‖x + iy‖2 + i‖x− iy‖2

}
.

Prove that (·, ·) is an inner product on X such that ‖x‖ =
√

(x, x).

Solution.

• (a) Consider, for example, f(x) = 1 and g(x) = 2x. Then

‖f‖1 = 1, ‖g‖1 = 1,

while

‖f − g‖1 =

∫ 1

0

|1− 2x| dx =
1

2
,

‖f + g‖1 =

∫ 1

0

(1 + 2x) dx = 2.

Thus

‖f − g‖2
1 + ‖f + g‖2

1 =
17

4
, 2

(
‖f‖2

1 + ‖g‖2
1

)
= 4,

so the norm does not satisfy the parallelogram law. Hence it is not
obtained from an inner product.

• (b) Note that we may write the expression for (·, ·) as

(x, y) =
1

4

3∑
k=0

i−k
∥∥x + iky

∥∥2
.



• It follows immediately from the definition that

(x, x) = ‖x‖2 ≥ 0, (y, x) = (x, y).

So the main thing we need to prove is that (x, y) is linear in y.

• Using the parallelogram law, we find for any x, y, x ∈ X that∥∥x + y + 2ikz
∥∥2

+ ‖x− y‖2

=
∥∥(

x + ikz
)

+
(
y + ikz

)∥∥2
+

∥∥(
x + ikz

)
− (y + ikz)

∥∥2

= 2
∥∥x + ikz

∥∥2
+ 2

∥∥y + ikz
∥∥2

.

Multiplying this equation by i−k, summing the result over 0 ≤ k ≤ 3,
using the fact that

∑3
k=0 i−k = 0, and using the definition of (·, ·), we

get
(x + y, 2z) = 2(x, z) + 2(y, z).

• Setting y = 0 in this equation, and using the fact immediate from the
definition that (0, z) = 0, we get (x, 2z) = 2(x, z). It then follows that

(x + y, z) = (x, z) + (y, z) .

Since (y, x) = (x, y), we also get

(x, y + z) = (x, y) + (x, z) .

• Repeated application of this result implies that for any m ∈ N,

(x, my) = m (x, y) .

It follows that for any m, n ∈ N,

n
(
x,

m

n
y
)

= (x, my) = m (x, y) ,

so (
x,

m

n
y
)

=
m

n
(x, y) .



• Finally, using the density of the rationals in the reals, the continuity of
the norm, and the immediate properties

(x,−y) = −(x, y), (x, iy) = i(x, y),

we conclude that
(x, λy) = λ (x, y)

for all λ ∈ C This proves that (·, ·) defines an inner product.

Remark. According to P. Lax in Functional Analysis, this observation is
due to von Neumann.



Problem 3. Let M be a linear subspace of a Hilbert space H. Prove that
M⊥⊥ = M .

Solution.

• If x ∈ M then 〈x, y〉 = 0 for all y ∈ M⊥, so x ⊥ M⊥. It follows that
M ⊂ M⊥⊥.

• Since M⊥⊥ is an orthogonal complement, it is a closed linear subspace,
so

M ⊂ M⊥⊥.

• If x ∈ H then, by the projection theorem, we may write x = y+z where
y ∈ M , z ∈ M⊥. If x ∈ M⊥⊥, then 〈x, z〉 = 0, so 〈y, z〉 + 〈z, z〉 = 0.

Since M⊥ = M
⊥
, we have 〈y, z〉 = 0, so 〈z, z〉 = 0. Hence z = 0 and

x = y ∈ M . It follows that

M⊥⊥ ⊂ M.

• Combining these results, we get M⊥⊥ = M .

Remark. The same argument shows that if E ⊂ H is any subset, then
E⊥⊥ = [E], where [E] is the closed linear span of E.



Problem 4. Consider C([0, 1]) equipped with the sup-norm, and define the
closed linear subspace

M =

{
g ∈ C([0, 1]) | g(0) = 0,

∫ 1

0

g(x) dx = 0

}
.

Let f ∈ C([0, 1]) \M be the function f(x) = x. Prove that

d(f, M) = inf
g∈M

‖f − g‖∞ =
1

2
,

but that the infimum is not attained for any g ∈ M . (Meaning that there is
no “closest” element to f in M .)

Solution.

• We consider real-valued functions for simplicity.

• We have for all x ∈ [0, 1] that

f(x)− g(x) ≤ ‖f − g‖∞.

Integrating this equation with respect to x, we get∫ 1

0

f(x) dx−
∫ 1

0

g(x) dx ≤ ‖f − g‖∞

Hence, if f(x) = x and g ∈ M so
∫ 1

0
g(x) dx = 0, then

1

2
≤ ‖f − g‖∞.

It follows that d(f, M) ≥ 1/2.

• For sufficiently small ε > 0, define the function

gε(x) =

{
−kx if 0 ≤ x ≤ δ,
x− 1/2− ε if δ < x ≤ 1,

where we choose −kδ = δ − 1/2 − ε to ensure the continuity of gε at
x = δ > 0 and

1

2
kδ

(
1

2
+ ε

)
=

1

2

(
1

2
− ε

)2



to ensure that the integral of gε is zero. Explicitly,

δ =
2ε

1/2 + ε
, k =

(1/2− ε)2

2ε
.

Then gε ∈ M and ‖f − gε‖∞ = 1/2 + ε → 1/2 as ε → 0+.

• It follows that d(f, M) ≤ 1/2, so d(f, M) = 1/2.

• Suppose, for contradiction, that the infimum is attained, and g ∈ M is
such that ‖f − g‖∞ = 1/2. Then

g(x)− f(x) ≥ −1

2
for all x ∈ [0, 1].

Thus, writing

h(x) = g(x)− x +
1

2
,

we see that h ≥ 0.

• Since
∫ 1

0
g(x) dx = 0, we have∫ 1

0

h(x) dx = 0.

However, since g(0) = 0, we have h(0) = 1/2. Since h is continuous
there is an interval [0, δ] of width δ > 0 on which h ≥ 1/4. Hence, since
h is nonnegative, ∫ 1

0

h(x) dx ≥
∫ δ

0

h(x) dx ≥ δ

4
> 0.

This contradiction proves that the infimum is not attained.



Problem 5. We denote the Hölder semi-norm with exponent 1/2 and the
L2-norm of a function f : [0, 1] → R by

[f ] = sup
x 6=y∈[0,1]

|f(x)− f(y)|
|x− y|1/2

, ‖f‖2 =

(∫ 1

0

|f(x)|2 dx

)1/2

.

We denote the sup-norm of f by ‖f‖∞.

(a) If f is continuously differentiable on [0, 1], with derivative f ′, prove that

[f ] ≤ ‖f ′‖2.

(b) Given R > 0, let

F = {f : [0, 1] → R | f is continuously differentiable, ‖f‖2 ≤ R, ‖f ′‖2 ≤ R}

Prove that F is a precompact subset of C([0, 1]) equipped with the sup-norm.

Solution.

• (a) By the fundamental theorem of calculus,

f(x)− f(y) =

∫ x

y

f ′(t) dt.

The Cauchy-Schwarz inequality implies that∣∣∣∣∫ x

y

f ′(t) dt

∣∣∣∣ =

∣∣∣∣∫ x

y

1 · f ′(t) dt

∣∣∣∣
≤

(∫ x

y

1 dt

)1/2 (∫ x

y

[f ′(t)]
2

dt

)1/2

≤ |x− y|1/2

(∫ 1

0

[f ′(t)]
2

dt

)1/2

≤ |x− y|1/2‖f ′‖2.

Hence for all 0 ≤ x 6= y ≤ 1, we have

|f(x)− f(y)|
|x− y|1/2

≤ ‖f ′‖2.

Taking the supremum over x 6= y, we get [f ] ≤ ‖f ′‖2.



• (b) Given ε > 0, let δ = ε2/R2. If f ∈ F and |x − y| < δ, then
|f(x)− f(y)| < ε, so the family F is equicontinuous.

• It follows from (a) that if f ∈ F , then

|f(x)− f(y)| ≤ R

for all x, y ∈ [0, 1]. Hence,

|f(x)| ≤ |f(x)− f(y)|+ |f(y)| ≤ R + |f(y)|.

Integrating this equation over [0, 1] with respect to y, we get for every
x ∈ [0, 1] that

|f(x)| ≤ R +

∫ 1

0

|f(y)| dy.

By the Cauchy-Schwarz inequality if f ∈ F , then∫ 1

0

|f(y)| dy =

∫ 1

0

1·|f(y)| dy ≤
(∫ 1

0

12 dy

)1/2 (∫ 1

0

|f(y)|2 dy

)1/2

≤ R.

Thus, |f(x)| ≤ 2R, so ‖f‖∞ ≤ 2R and F is bounded.

• The Arzelà-Ascoli theorem implies that F is a precompact subset of
C([0, 1]).


