
Solutions: Problem Set 2
Math 201B, Winter 2007

Problem 1. Let (xn)∞n=1 be a sequence in a Banach space. Prove that the
unordered sum ∑

n∈N

xn

converges if and only if the series

∞∑
n=1

xn

converges unconditionally.

Solution.

• First, suppose that the unordered sum converges in the normed space
X, to x ∈ X say. Let

∑∞
m=1 ym be a rearrangement of the series∑∞

n=1 xn, so that ym = xσ(m) where σ : N → N is one-to-one and onto.

• Given ε > 0, there is a finite subset I ⊂ N such that if J ⊃ I is a finite
subset of N, then ∥∥∥∥∥∑

n∈J

xn − x

∥∥∥∥∥ < ε.

If
M ≥ max

{
σ−1(n) | n ∈ I

}
,

then J = {σ(1), σ(2), . . . , σ(M)} ⊃ I. Hence,∥∥∥∥∥
M∑

m=1

ym − x

∥∥∥∥∥ =

∥∥∥∥∥∑
n∈J

xn − x

∥∥∥∥∥ < ε,

so
∑∞

m=1 ym = x, and the series converges unconditionally.

• Conversely, suppose that the unordered sum does not converge. Then
for each x ∈ X, there exists ε > 0 such that for every finite subset
I ⊂ N there exists a finite subset J ⊃ I with∥∥∥∥∥∑

n∈J

xn − x

∥∥∥∥∥ ≥ ε.



Pick a finite set J1 ⊃ {1} with this property, and, given a finite set
JN ⊂ N, pick a finite set JN+1 ⊃ {1, . . . , N +1}∪JN with this property.
We then define a rearrangement of N by listing the elements of J1 (in
any order), followed by the elements of J2 \ J1 (if any), J3 \ J2, and
so on. The resulting rearranged series has partial sums that differ
infinitely often by at least ε from x. Hence, the series cannot converge
unconditionally to any x ∈ X.



Problem 2. Suppose that the unordered sums∑
α∈A

xα,
∑
β∈B

yβ

converge in a Hilbert space. Prove that〈∑
α∈A

xα,
∑
β∈B

yβ

〉
=

∑
(α,β)∈A×B

〈xα, yβ〉 .

Solution.

• We write
x =

∑
α∈A

xα, y =
∑
β∈B

yβ.

We want to show that the unordered sum of complex numbers∑
(α,β)∈A×B

〈xα, yβ〉

converges and is equal to 〈x, y〉.

• First we give a simple, but incomplete, argument. If ε > 0, then there
exist finite subsets I ⊂ A, J ⊂ B such that if I ′ ⊃ I, J ′ ⊃ J are finite
subsets of A, B then∥∥∥∥∥∑

α∈I′

xα − x

∥∥∥∥∥ < ε,

∥∥∥∥∥∑
β∈J ′

yβ − y

∥∥∥∥∥ < ε.

Since∑
(α,β)∈I′×J ′

〈xα, yβ〉 − 〈x, y〉 =

〈∑
α∈I′

xα,
∑
β∈J ′

yβ

〉
− 〈x, y〉

=

〈
x,
∑
β∈J ′

yβ − y

〉
+

〈∑
α∈I′

xα − x, y

〉

+

〈∑
α∈I′

xα − x,
∑
β∈J ′

yβ − y

〉
,



it follows from the Cauchy-Schwarz inequality that∣∣∣∣∣∣
∑

(α,β)∈I′×J ′

〈xα, yβ〉 − 〈x, y〉

∣∣∣∣∣∣ < ε‖x‖+ ε‖y‖+ ε2.

• Therefore, given any ε > 0, we can find a finite set I ×J ⊂ A×B such
that if I ′ × J ′ ⊃ I × J is any finite rectangle in A×B, then∣∣∣∣∣∣

∑
(α,β)∈I′×J ′

〈xα, yβ〉 − 〈x, y〉

∣∣∣∣∣∣ < ε.

• Unfortunately, this is not quite sufficient to prove that the unordered
sum ∑

(α,β)∈A×B

〈xα, yβ〉

converges because we have to prove this inequality for every finite sub-
set K ⊃ I × J of A×B, not just rectangles of the form K = I ′ × J ′.

• The difficulty here is that if K ⊂ I ′ × J ′ we cannot say that∣∣∣∣∣∣
∑

(α,β)∈K

〈xα, yβ〉 − 〈x, y〉

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

(α,β)∈I′×J ′

〈xα, yβ〉 − 〈x, y〉

∣∣∣∣∣∣ .
We would be able to say this, however, if each term in the sum were a
nonnegative real number. Thus, it appears necessary to split 〈xα, yβ〉
into its real and imaginary parts, and prove convergence of the un-
ordered sums of the positive and negative terms in each sum, which
would imply convergence of the original complex unordered sum. We
omit a detailed proof. (Let me know if you have a simpler one!)



Problem 3. Let {eα | α ∈ A} be an orthonormal set in a Hilbert space H.
Define

M =

{∑
α∈A

cαeα | cα ∈ C,
∑
α∈A

|cα|2 < ∞

}
.

Prove that M is a closed linear subspace of H.

Solution.

• The set M is well-defined since
∑

α∈A cαeα converges if and only if∑
α∈A |cα|2 converges.

• Note that convergent unordered sums can be added term-by-term.
Proof: Suppose that ∑

α∈A

xα = x,
∑
α∈A

yα = y.

Given ε > 0, there are finite sets I ⊂ A, J ⊂ A such that if I ′ ⊃ I,
J ′ ⊃ J are finite subsets of A, then∥∥∥∥∥∑

α∈I′

xα − x

∥∥∥∥∥ <
ε

2
,

∥∥∥∥∥∑
α∈J ′

yα − y

∥∥∥∥∥ <
ε

2
.

It follows that if I ∪ J ⊂ K is a finite subset of A, then∥∥∥∥∥∑
α∈K

(xα + yα)− (x + y)

∥∥∥∥∥ ≤

∥∥∥∥∥∑
α∈K

xα − x

∥∥∥∥∥+

∥∥∥∥∥∑
α∈K

yα − y

∥∥∥∥∥
<

ε

2
+

ε

2
= ε.

• If x, y ∈M, with

x =
∑
α∈A

aαeα, y =
∑

α

bαeα

then
x + y =

∑
α∈A

(aα + bα) eα.



Since

|aα + bα|2 ≤ (|aα|+ |bα|)2 ≤ (2 max {|aα| , |bα|})2 ≤ 4
(
|aα|2 + |bα|2

)
,

it follows that

∑
α∈A

|aα + bα|2 ≤ 4

(∑
α∈A

|aα|2 +
∑
α∈A

|bα|2
)

< ∞,

so x + y ∈M.

• Similarly, we also have λx ∈ M for all λ ∈ C and x ∈ M, so M is a
linear space.

• To prove that M is closed, first note that M ∩M⊥ = {0}. This
follows from the projection theorem, but it is easy to show directly: If

x ∈M∩M⊥, then since M⊥ = M⊥
we have x ⊥ x, so x = 0.

• Suppose that x ∈M. Let

y =
∑
α∈A

〈eα, x〉eα.

According to Bessel’s inequality,∑
α∈A

|〈eα, x〉|2 ≤ ‖x‖2,

so y ∈M. Moreover, 〈eα, x〉 = 〈eα, y〉 for all α ∈ A, which implies that
x − y ∈ M⊥. Since x, y ∈ M, it follows that x − y ∈ M ∩M⊥, so
x = y and x ∈M, which implies that M is closed.


