Solutions: Problem Set 5
Math 201B, Winter 2007

Problem 1. Define f: T — R by
f(z) =2? for —m < a <.

(a) Compute the Fourier coefficients of f.
(b) Use Parseval’s theorem to deduce that
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Solution.

e (a) If n # 0, we have

f(n) = \/%/_Wa: e dx

f(0) = \/%_W/_:ﬁdx
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e (b) By Parseval’s theorem,

> |iw)| = [1r@r

neL
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/|f dx—/xdx:%.

We compute that



Using (a), we have

L2 1 478 1 o= 1672
S| = g r2e >
nez n=
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Equating these two expressions and solving for Y " 1/n*, we get the
result.



Problem 2. Suppose that (¢,)5°, is an approximate identity on T and
f e LYT).
(a) Prove that for every n € N

1fn * flly < [1f1lx-

(b) Prove that
@ * f=fll, =0 asn— oo,

(c) If f,g € L'(T) have the same Fourier coefficients, prove that f = g.

Solution.

e (a) Using Fubini’s theorem for nonnegative functions and the fact that
an approximate identity is nonnegative with integral equal to 1, we get

léu s flli = / 60 % f(2)] da

- [/ qsn(x—y)f(y)dy] i
< [ ( / ¢n(:r—y)|f(y)!dy> s
= [([onte=rwac) a

- / ()] dy
= 1Iflh.

e (b) Note that if g € C(T), then

lglls = / l9()] de < 2nllg]l.

Let ¢ > 0. Since the continuous functions are dense in L'(T), there
exists g € C(T) such that || f — g||1 < €/3. Since ¢,, is an approximate
identity, ¢, * ¢ — g uniformly as n — oo, and there is N € N such that

||¢n*g_g”°°<6i7r for all n > N.



If n > N, then, using the result from (a), we get

lon = f = fliy

1fn * f = bnxglly + [16n* 9 = glly + llg = fl
fn  (f = Dy + llén * g —glly + lg = flx

< Nf =gl +2mllén * g — gl + llg = fl1
- e+e+e
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which proves that ¢, * f — f in L(T) as n — oc.

e (c) If f,g € L*(T) have the same Fourier coefficients, then the Fourier
coefficients of f — g are equal to 0. It therefore suffices to prove that if
the Fourier coefficients of f € L'(T) are equal to 0, then f = 0.

p(z) = Z ¢, e

In|<N

o If

is a trigonometric polynomial, then

px @) =ver 3 caf(miem.

In|<N
Thus, px f =0 iff(n) =0 for all n € Z.

o Let (¢,)22, be an approximate identity consisting of trigonometric
polynomials ¢,. Then ¢, *x f = 0 for every n € N and, from (b),
¢n * f — fin LY(T), so f = 0. This proves the result.

Remark. If f,g € L*(T) have the same Fourier coefficients, then it is
immediate that f = g because the Fourier series converge to the functions in
L*(T). This argument does not work for f,g € L'(T) since, in general, the
Fourier series of the functions need not converge in L'(T).



Problem 3. Consider the differential equation

—u" +u=f.
(a) If f € L*(T), use Fourier series to show that there is unique solution
u e H*(T).
(b) Show that u = G * f for a suitable function G (called the Green’s func-
tion).
(c) Show that G € H*(T) for s < 3/2.

Solution.

e (a) Computing Fourier coefficients, we find that u € L*(T) is a solution
of the equation if and only if

_(in)Qan'+'ﬂn ::j;7

or

~

Uy, = o
o140
If u € L*(T) is the function with these Fourier coefficients, then, since

lullfe = > (1402 i =
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~ 12 9
jﬁ ::HfH%

we see that u € H?(T), which proves the result. In fact, we have shown

that the linear operator (—d?/dz® + 1) is an isometric isomorphism of
H?*(T) onto L*(T).

e (b) By the convolution theorem,
u=Gx*f

where
A 1 1

" V21 +n?
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It follows that

where the Fourier series converges in L*(T). (Since the Fourier coeffi-
cients of G are summable, it also converges uniformly.)



e (c) The function G € H*(T) if and only if

> (1407 |Ga

neL

2
< 00,

or
1
2—2 — < 00,
neL (1 +n )

The terms in this series behave like 1/n227%) as n — oo, and by com-

parison with the series > 1/nP, the series converges if and only if
22—s5)>1,

or s <3/2.



Problem 4. Suppose that f : T — C is continuous, with Fourier coefficients

£ 1 —inT
fo= E/Tf(x)e dzx.

Let fn denote the mean of the first (N + 1) partial sums of the Fourier series
of f, meaning that
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(a) Show that fy = Ky * f where Ky : T — R is the Fejér kernel, given by

11

KN(I):%NH

(N +1—|n|)e™.

(b) Show that Ky(z) may also be written as

11 [sin((N+1)z/2)7°
Kn(z) = %N—i—l[ sin (x/2) ] v 70,
Kn(0) = 5-(N+1)

(c) Show that Ky is an approximate identity. What can you say about the
convergence of fy to f as N — o0?

Solution.

e (a) Writing fin in terms of f and rearranging the result, we have

N M

ful@) = = 5T fe



where

Z (N+1—|n))e™ = Zei(”_g)x]

n=—N Ln=0

- N 2
L n=0

[ iNz 1—€i(N+1)x 2
e 2 | —

< (5)
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exp (_z(N—Q&-l)z) — exp (z(N;—l)x)

exp (—75) —exp ()
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The expression for Ky (x) with x # 0 then follows.

e For z = 0, we have
Ky(0) = ——— (N+1—|n|).
N

Using the standard formula for the sum Zf:f:l n, we compute that

> (N+1-1n)) = N+1+2) (N+1-n)

n=—N n=1

N
= N+1+2Zn

n=1



- N+1+2-%N(N+1)
= (N+1)%
The expression for Ky (0) then follows.
e (c) It is immediate from the expression in (b) that Ky > 0.

e Since
/ei”wdx:() if n #£ 0,
T

the only nonzero term in the integration of the expression for Ky in
(a) is the one with n = 0, so that

1 1
K de = —— (N +1 ldx = 1.
/TN(‘””" e +>/T .

e If0<d<mandé < |z|] <, then from (b) we see that

11 1\
Ky(z) < — .
v@) S 5N <sin5/2>

If follows that K — 0 uniformly on § < |z| <7 as N — oo, so that

lim Ky(z)dx = 0.

N—oo o<|z|<m
This shows that the sequence (Ky)%_; is an approximate identity.

e If f € C(T) is continuous, then the Fejér sums fy = Ky * f converge
uniformly to f on T.

Remark. One may write the partial sums of the Fourier series of f,

N
SN = <= 3 fue™
n=—N

as a convolution Sy(f) = Dy * f of f with the Dirichlet kernel,

~ sin((N+1/2)x)
D) = 27 sin (x/2) v#9,

2N +1
Dy(0) = “5—.




The sequence (Dy)3_; is not an approximate identity. Although
/DN(a:) de =1 for every N € N,
T
the kernel Dy is not nonnegative; more importantly,

/ |Dn(x)| dx — oo as N — o0.
T

(The integral grows roughly like log N.) As a result, it is not true that the
partial sums of the Fourier series of a continuous function converge uniformly
to the function. Averaging the partial sums, however, leads to the Fejér kernel
and a uniformly convergent sequence of trigonometric polynomials. For more
discussion of this problem, and many other things, see Fourier Analysis by
T. W. Korner.



