Solutions: Problem Set 6
Math 201B, Winter 2007

Problem 1. Consider the Schrodinger equation on the circle,

MWy = Ugg, rxeT, tel,
u(z,0) = f(x), xz e T,

where u : T xR — C, f : T — C and the derivatives are interpreted in an
appropriate sense.

(a) Solve for u(x,t) by the use of Fourier series. If U(t) = u(-,t) € L*(T),
show that
U(t)=1()f

where T'(t) : L*(T) — L*(T) is a bounded linear operator, defined for all
teR.

(b) Show that T'(t) is a unitary operator.

(c) Briefly compare the qualitative properties (smoothing, reversibility, long-
time behavior) of the Schrodinger equation with those of the heat equation.

Solution.

e Writing u in a Fourier series,

1 ~ inx
u(x,t) = Nir Zun(t)e ,

ne”Z

and taking Fourier coefficients of the equation, we get

di, .
I—— = —N Uy,
dt
n(0) = fu

The solution is o
Ty (t) = foe™ .
It follows that

u(z,t) = — anem%emx.



e We may write u(-,t) = T'(t)f where the operator T'(¢) is defined by

—

(T(t)f), =" fu-

Note that since ]emZt] = 1, Parseval’s theorem implies that

2

T = ST,

ne”

in?t £ 2

= 2|

nez

= 2|
ne”

= |IfI*

Thus, T(t)f € L*(T) for every f € L*(T), and T'(¢) is an isometry on
L*(T).

2

e Similarly if ¢ € L*(T), then, since ¢”’* # 0, there exists a unique
f € L*(T) such that T'f = g, given by

fn _ e—ithgn'
Thus, T'(t) is invertible, with
T7Yt) : L*(T) — L*(T)

defined by

—

(T, =" o

e It follows from Parseval’s theorem that

(£.Tg) = Y f.Tg,

nel

o,
_ anezntgn

nel



where -
—in?t ¢
(T().f), = " " -
We see that T*(t) = T'(t), so T(t) is unitary.

e (c) A similar argument to the one above shows that for any s > 0
2

S 402 | TOF), =S (1+n%)

neE”Z nez

2

fa

so T(t)f € H*(T) if and only if f € H*(T). Thus, the solutions at
time ¢ has exactly the same smoothness, as measured by the Sobolev
spaces H*(T), as the initial data f, and, unlike the heat equation, the
Schrodinger equation does not smooth the solution.

e The Schrodinger equation can be solved both forwards and backwards
in time, unlike the heat equation which can be solved only forwards in
time.

e Finally, unlike the solution of the heat equation, the solution of the
Schrodinger equation does not approach a steady state as ¢t — o0;
instead it is an almost-periodic, oscillatory function of ¢.

Remark. The Schrodinger equation is a typical example of a dispersive wave
equation. This partial differential equation describes a single non-relativistic
quantum mechanical particle, which is not subject to any forces, that moves
around a one-dimensional circle. The wave-function u(z,t) has the interpre-
tation that |u(x,t)[* is the spatial probability density of finding the particle
at the spatial location x at time t.



Problem 2. (a) Suppose that P, ) are orthogonal projections on a Hilbert
space. Prove that PQ) = 0 if and only if ran P | ran Q).

(b) Suppose that {Py, P, ..., P,} is a family of orthogonal projections on a
Hilbert space, and P; P, = 0 for j # k. Prove that P, + P, + ...+ P, is an
orthogonal projection.

(c) Suppose that {P; | £ € N} is a countably-infinite family of orthogonal
projections on a Hilbert space ‘H such that

@ranPk:H, PP, =0 forj#k.

keN

Prove that for every x € H
o0
Z P =z,
k=1

where the series converges strongly (i.e. with respect to the norm) in H. Is

it true or false that .
> h=1.
k=1

where the series converges with respect to the operator norm on B(H)?

Solution.
e (a) If PQ = 0, then ran@ C ker P, so (ker P)* C (ranQ)*. Since
(ker P)* = ran P, we see that ran P 1 ran Q.

e Conversely, if ran P L ran@, then ran P C (ranQ)*, which implies
that (ran Q)*+ C (ran P)*. Since ran @ is closed, (ran Q)+ = ran Q,
and since P is an orthogonal projection (ran P)* = ker P. Hence
ran ) C ker P, and PQ = 0.

e (b) Let E= P + ...+ P,. Since P} = P;, P} = P;, and P;P, = 0 for
Jj # k, we have

E'=(P+..+P)'=P'+...+P:=P +...+ P, =F,
and
£ (3n) (Xn)- X an-3n-Yn-n
7=1 k=1 J,k=1 7=1 j=1

so F is an orthogonal projection.



e (c) Let

3

E, = Py.
k=1
Then F, is an orthogonal projection, so (x, E,x) is real, and

| Enz|® = (Epx, Eyx) = (z,Elx) = (z, Eqz).

As in the proof of Bessel’s inequality, we compute that

0 < ||Enz—z|?
< (E,x—z,E,x — 1)
< | Eaz|® = 2 (z, Epx) + |||
< lal® = | Enz?,

so for every n € N, we have
2
1Bz ]|” < ).

e Since the P, are mutually orthogonal projections, the sequence (Pyz)
is orthogonal, and by the Pythagorean theorem

2 2
1Enz]® = I Prel.
k=1
It follows that .
2
D N Pel* < e,
k=1
which implies that >~ Pyx converges, to y € H, say.

e Suppose that z € ran P,. Then Pyz = z and z € (ran P;)™ for j # k,
S0

<27y> = <Z,ZP]’$> = <27ka> = <P/€27:C> = <Z,.T>-
j=1
It follows that (z —y) L ran Py for every k € N, which implies that

(x—y) L @ranpk.

keN

oo
k=1

Hence x — y = 0, and



Problem 3. (a) Suppose that H;, Ho are Hilbert spaces. Define H; @ Hs
as the linear space of ordered pairs

Hi @ Hy = {(21,22) | 21 € Hy, 22 € Ha},

with the inner product of x,y € Hy ® He, with z = (z1,22), ¥ = (y1,y2),
defined by

<%Z/>H1@H2 = <x1,y1)H1 + <x2,y2)H2 .
Prove that ‘H; @ Hs is a Hilbert space.

(b) Suppose that {H, |« € A} is an arbitrary indexed family of Hilbert
spaces. Define

@Ha = {(:ca)aeA | o € Ha, Z llzall® < oo} ,

a€cA acA

with the inner product of

x:(:ca)e@?'(a, y:<ya)E@Ha

a€cA acA

defined by
(@,9) = > (Ta, Ya) -

acA
Prove that @, 4, Ha is a Hilbert space.

Solution.
e (a) This is straightforward to verify.

e (b) First, we prove that

H=EPH.

acA

is a linear space. If A € C and = = (z,) € H, then

Do Iall? = AP Y llzall® < oo,

a€cA acA



sodr € H. lf x = (2,) € H,y = (Yo) € H, and I C A is a finite subset,
then using the triangle inequality in ‘H, and the triangle inequality in

*(1),
1/2 1/2 1/2
ael acl acl
we get
1/2 1/2
(Z\|xa+ya|l2) < (Z[H%H + HyaHf)
acl acA

IN

(Z chall2> N + (Z Hya\|2) 1/2-

ael acl
It follows that Y, 4 [[Za + Yall* < 00, s0 (z 4+ y) € H.
The series defining the inner product is absolutely convergent and well-

defined on H as an unordered sum since, by the Cauchy-Schwartz in-
equality, for any finite subset I C A

D Mz gl < D llzall gl

acl a€el
1/2 1/2
< (Z Hxan?) <Z HMP)
acl ael
< = {lyll-

It is straightforward to verify that (-,-) : H x H — C has the properties
of an inner product.

The main thing we need to prove is that H is complete. Suppose
that (z,)5°, is a Cauchy sequence in H, with x,, = (.4 )aca, Where
ZTn.a € Hq. Then, since

”xn,a - xm,a” < |z — 2],

(Tna)o2, is a Cauchy sequence in H, for each a € A. Since H, is
complete, there exists z, € H, such that z,, — z, as n — oco. Let
T = (To)aca. We claim that ||z — z,|| — 0 as n — oo and = € H,
meaning that H is complete.



e If [ C A is ay finite subset, then

Z ||Ia - l’n,aHQ - nlngréoz ||xm,a - In,a||2

acl acl

S hHl E me,a - xn,aHz
m—o00
acA

= lim |z, — .|
m—00

Since the sequence (x,) is Cauchy, given € > 0, there exists N € N
such that ||z, — z,|| < € for all n,m > N. It follows that if n > N,
then lim,, oo ||Tm — 2,]|* < €%, and

1/2
|z — 2| = (Z [ xn,a”2>

acA

1/2
= sup (Z |za — xn,a\|2) | I C A finite

ael
< €

meaning that ||z — z,|| — 0 as n — oo.

e By the previous proof, we can pick n € N such that ||z — x,| < 1,
meaning that © — z,, € H. Then z = (v — x,) + =, € H since H is
closed under addition.

Remark. A special case of this proof is the fact that
s =Ec
neN

is a Hilbert space.



