Problem Set 3

Math 205B: Spring Quarter, 2014

1. (a) Let $0<R(a)<\infty$ denote the radius of convergence of a power series at $a \in \mathbb{C}$, and suppose that $|b-a|<\frac{1}{2} R(a)$. Prove that the radius of convergence $R(b)$ of the power series at b of the analytic continuation of the power series at a satisfies $|R(a)-R(b)| \leq|a-b|$. (You can assume standard facts about the convergence of power series.)
(b) Deduce that if a holomorphic germ has an analytic continuation along a curve $\gamma:[0,1] \rightarrow \mathbb{C}$, then the analytic continuation can always be obtained by analytic continuation along a finite chain of discs.
(c) Show that if \mathbf{f} is the complete analytic continuation of a holomorphic germ f_{a}, then the collection of germs $\left\{f_{z} \in \mathbf{f}\right\}$ is countable for every $z \in \mathbb{C}$. Hint. Continue analytically by discs with rational centers.
2. (a) Consider a linear ODE

$$
a(z) f^{\prime \prime}+b(z) f^{\prime}+c(z)=0
$$

where the coefficients a, b, c are entire functions. Show that if a germ f_{z} satisfies this ODE at $z \in \mathbb{C}$, then every analytic continuation of f_{z} satisfies the ODE.
(b) Solve the ODE

$$
z^{2} f^{\prime \prime}-z f^{\prime}+f=0
$$

and discuss what happens when solutions are continued analytically around the unit circle $\gamma:[0,1] \rightarrow \mathbb{C}, \gamma(t)=e^{2 \pi i t}$.
3. Consider the multi-valued function

$$
w=z^{1 / 3}+(z-1)^{1 / 2}
$$

(a) Show that the branches of this function are solutions of an irreducible polynomial $P(z, w)=0$ of degree 6 in w.
(b) Show that the critical values are $z=0, z=1, z=\infty$.
(b) Define branches $\left\{w_{k}(z): 1 \leq k \leq 6\right\}$ by their values at $z=2$:

$$
\begin{gathered}
w_{1}(2)=t+1, \quad w_{2}(2)=t \lambda+1, \quad w_{3}(2)=t \lambda^{2}+1 \\
w_{4}(2)=t-1, \quad w_{5}(2)=t \lambda-1, \quad w_{6}(2)=t \lambda^{2}-1
\end{gathered}
$$

where $t=2^{1 / 3} \in \mathbb{R}$ and $\lambda=e^{2 \pi i / 3}$. Let γ, δ be closed curves in $\mathbb{C} \backslash\{0,1\}$ with winding numbers $W_{\gamma}(0)=1, W_{\gamma}(1)=0$, and $W_{\delta}(0)=0, W_{\delta}(1)=1$. Show that analytic continuation along γ gives the permutation of branches
$(123)(456)$
and analytic continuation along δ gives the permutation

$$
(14)(25)(36)
$$

Deduce the permutation of the branches for the curve $\epsilon=\delta^{-1} \gamma^{-1}$.
(c) Draw a schematic picture of the Riemann surface of this function. How many ramification points are there and what are their orders? What is the genus of the Riemann surface?
4. For $\omega_{1}, \omega_{2} \in \mathbb{C}^{*}$ with $\omega_{1} / \omega_{2} \notin \mathbb{R}$, define the lattice

$$
\Lambda=\left\{n_{1} \omega_{1}+n_{2} \omega_{2}: n_{1}, n_{2} \in \mathbb{Z}\right\}
$$

Let \mathbb{C} / Λ be the corresponding Riemann surface with projection $p: \mathbb{C} \rightarrow$ \mathbb{C} / Λ, where $p: z \mapsto[z]$. For $a \in \mathbb{C}$, define

$$
a \Lambda=\{a \omega: \omega \in \Lambda\}
$$

We say that two lattices $\Lambda, \Lambda^{\prime}$ are similar if $\Lambda^{\prime}=a \Lambda$ for some $a \in \mathbb{C}^{*}$.
(a) If $\Lambda, \Lambda^{\prime}$ are lattices with projections p, p^{\prime} and $f: \underset{\sim}{\mathbb{C}} / \Lambda \rightarrow \mathbb{C} / \Lambda^{\prime}$ is biholomorphic, show that there is a biholomorphic map $\tilde{f}: \mathbb{C} \rightarrow \mathbb{C}$ such that $f \circ p=p^{\prime} \circ \tilde{f}$.
(b) If $a, b \in \mathbb{C}$ and $a \Lambda \subset \Lambda^{\prime}$, define $f: \mathbb{C} / \Lambda \rightarrow \mathbb{C} / \Lambda^{\prime}$ by $f_{a, b}:[z] \mapsto[a z+b]^{\prime}$. Show that $f_{a, b}$ is a biholomorphism if and only if $a \Lambda=\Lambda^{\prime}$, so two tori \mathbb{C} / Λ and $\mathbb{C} / \Lambda^{\prime}$ are holomorphically equivalent if and only if their lattices are similar.

