Hecke Operators

We recall that an entire modular form of weight k is an analytic function on the upper half-plane \mathbb{H} that satisfies the transformation property

$$f \left(\frac{az + b}{cz + d} \right) = (cz + d)^k f(z)$$

for all matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in the modular group Γ, and has a Fourier expansion $f(z) = \sum_{m=0}^{\infty} c(m) e^{2\pi imz}$. The fact that only non-negative powers of $e^{2\pi imz}$ occur in the expansion corresponds to the fact that f is holomorphic at infinity. We let M_k denote the set of entire modular forms of weight k and recall that M_k is a linear space over \mathbb{C} and is in fact finite dimensional. We are interested in the sequence of linear operators $T_n : M_k \rightarrow M_k$ defined as follows:

$$T_n f(z) = n^{k-1} \sum_{d|n} d^{-k} \sum_{b=0}^{d-1} f \left(\frac{nz + bd}{d^2} \right),$$

where $d|n$ is taken to imply that d is positive. While it’s obvious that $T_n f$ is linear and holomorphic on \mathbb{H}, as a finite sum of holomorphic functions, it’s not clear that $T_n f$ transforms correctly or has the right Fourier expansion. We first consider the Fourier expansion of f.

Theorem 1. If $f \in M_k$, and $f(z) = \sum_{m=0}^{\infty} c(m) e^{2\pi imz}$, then

$$T_m f(z) = \sum_{m=0}^{\infty} \gamma_n(m) e^{2\pi imz},$$

where

$$\gamma_n(m) = \sum_{d|(n,m)} d^{k-1} e^{\frac{mn}{d^2}}.$$

In particular, we see that $T_n f$ is holomorphic at infinity.

Proof. We substitute the Fourier expansion for f into the formula for $T_n f$ and then rework the resulting expression so that it looks like a Fourier expansion. From $f(z) = \sum_{m=0}^{\infty} c(m) e^{2\pi imz}$, we see that

$$T_n f(z) = n^{k-1} \sum_{d|n} d^{-k} \sum_{b=0}^{d-1} \sum_{m=0}^{\infty} c(m) e^{2\pi im(nz + bd)/d^2}.$$

We first pull out the infinite sum, obtaining

$$T_n f(z) = \sum_{m=0}^{\infty} \sum_{d|n} (n/d)^{k-1} c(m) e^{2\pi imz/d^2} (1/d) \sum_{b=0}^{d-1} e^{2\pi imb/d}.$$

If d divides m, then the sum over b is a sum of 1’s and so is equal to d. If d does not divide m, then by the geometric sum formula, the sum over b takes the value $[1 - e^{2\pi imb}] / [1 - e^{2\pi imb/d}] = 0$. Therefore,

$$T_n f(z) = \sum_{m=0}^{\infty} \sum_{d|n,d|m} (n/d)^{k-1} c(m) e^{2\pi imz/d^2}. $$
Setting \(q = m/d \), we rewrite the above summation as

\[
T_n f(z) = \sum_{q=0}^{\infty} \sum_{d|n} (n/d)^{k-1} c(qd) e^{2\pi i q n z/d}.
\]

In the sum over \(d \) we can replace \(d \) by \(n/d \), since each divisor of \(n \) is still included once, obtaining

\[
T_n f(z) = \sum_{q=0}^{\infty} \sum_{d|n} d^{k-1} c(qn/d) e^{2\pi i q d z}.
\]

Now we collect, for each \(m \in \mathbb{N} \), the powers \(e^{2\pi i q d z} \) of \(e^{2\pi i z} \) for which \(qd = m \), obtaining

\[
T_n f(z) = \sum_{m=0}^{\infty} \sum_{d|n,d|m} d^{k-1} c(mn/d^2) e^{2\pi i m z}.
\]

This implies the theorem, since \(d|\gcd(n,m) \) iff \(d|n \) and \(d|m \).

Now we check that \(T_n f \) transforms correctly under \(\Gamma \). It will be useful to write \(T_n f \) in another form involving only one summation. By inspection one sees that

\[
T_n f(z) = \frac{1}{n} \sum_{a \geq 1, a d = n, 0 \leq b < d} a^{k-1} f\left(\frac{az + b}{d}\right).
\]

If we let \(A z = (az + b)/d \), then

\[
T_n f(z) = \frac{1}{n} \sum_{a \geq 1, a d = n, 0 \leq b < d} a^{k} f(A z).
\]

The map \(z \mapsto A z \) is an example of a transformation of order \(n \), namely a transformation of the form

\[
z \mapsto \frac{az + b}{cz + d},
\]

where \(a, b, c, d \) are integers with \(ad - bc = n \). The transformation can be represented by a matrix

\[
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

having determinant \(n \) in the obvious way provided we identify each matrix with its negative. We let \(\Gamma(n) \) denote the set of all transformations of order \(n \). Although \(\Gamma(n) \) is not a group, we observe that \(\Gamma(1) \) is the modular group \(\Gamma \) and in that case \(A \) acts as a mobius transformation. We can put an equivalence relation on \(\Gamma(n) \) by calling to matrices \(A_1 \) and \(A_2 \) equivalent if they are in the same orbit of \(\Gamma \) under the action of left-multiplication, i.e. if \(A_1 = V A_2 \) for some \(V \in \Gamma \). We now state two basic theorems about transformations of order \(n \). The proofs will be omitted.

Theorem 2. A set of nonequivalent elements of \(\Gamma(n) \) possessing one representative per equivalence class is given by the set of matrices of the form \(A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \), where \(d \) runs through the positive divisors of \(n \) and, for each \(d \), \(a = n/d \) and \(b \) runs through a complete residue system modulo \(d \).
Theorem 3. If \(A_1 \in \Gamma(n) \) and \(V_1 \in \Gamma \), then there exist matrices \(A_2 \in \Gamma(n) \) and \(V_2 \in \Gamma \), such that \(A_1 V_1 = V_2 A_2 \). Moreover, if

\[
A_i = \begin{pmatrix} a_i & b_i \\ 0 & d_i \end{pmatrix} \quad \text{and} \quad V_i = \begin{pmatrix} \alpha_i & \beta_i \\ \gamma_i & \delta_i \end{pmatrix}
\]

for \(i = 1, 2 \), then we have

\[
a_1(\gamma_2 A_2 z + \delta_2) = a_2(\gamma_1 z + \delta_1).
\]

Note that in the summation (1), if we replace \(A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \) with a matrix \(A' = \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix} \), where \(b \equiv b' \pmod{d} \), then the sum is unchanged, since for some integer \(m \) we have

\[
f(A'z) = f\left(\frac{az + b + md}{d}\right) = f(Az + m) = f(Az),
\]

since \(f \) is invariant under translations by integers. Thus we make the observation that by Theorem 2, we can write the sum in (1) defining \(T_n f \) in the form

\[
T_n f(z) = \frac{1}{n} \sum_A a^k f(Az),
\]

(2)

where \(A \) runs through a complete set of nonequivalent elements in \(\Gamma(n) \) of the form described in the theorem, and for each \(A \) the coefficient \(a^k \) is the \(k \)'th power of the entry \(a \) in \(A \). We will use these results to establish the modular transformation property of \(T_n f \).

Theorem 4. If \(f \in M_k \), and \(V = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma \), then

\[
T_n f(Vz) = (\gamma z + \delta)^k(T_n f(z)).
\]

Proof. Let \(V \in \Gamma \) be fixed. Using the representation in (2) above, we write

\[
T_n f(Vz) = \frac{1}{n} \sum_A a^k f(AVz),
\]

(3)

where \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) runs through a complete set of nonequivalent elements of \(\Gamma(n) \) of the form in Theorem 3. By Theorems 2 and 3, for each \(A \) there exists matrices

\[
A' = \begin{pmatrix} a' & b' \\ 0 & d' \end{pmatrix} \quad \text{in} \quad \Gamma(n) \quad \text{and} \quad V' = \begin{pmatrix} \alpha' & \beta' \\ \gamma' & \delta' \end{pmatrix} \quad \text{in} \quad \Gamma,
\]

such that \(AV = V'A' \) and \(a(\gamma' A' z + \delta') = a'(\gamma z + \delta) \). Therefore, \(a^k f(AVz) = a^k f(V'A'z) \). Since \(f \) is a modular form of weight \(k \), we have

\[
f(V'A'z) = (\gamma' A' z + \delta')^k f(A'z),
\]

so

\[
a^k f(AVz) = a^k(\gamma' A z + \delta')^k f(A'z) = (a')^k(\gamma z + \delta)^k f(A'z).
\]

Thus, (3) becomes

\[
T_n f(Vz) = \frac{1}{n} (\gamma z + \delta)^k \sum_A (a')^k f(A'z).
\]
It is easy to show that given $A, B \in \Gamma(n)$, we have $A' \sim B'$ iff $A \sim B$, so as A runs through a complete set of nonequivalent elements of $\Gamma(n)$, so does A'. Thus we have

$$T_n f(Vz) = \frac{1}{n} (\gamma z + \delta)^k \sum_{A'} (a')^k f(A'z) = (\gamma z + \delta)^k (T_n f(z)).$$

Corollary 5. If $f \in M_k$, then $T_n f \in M_k$ for all n. If f is a cusp form (i.e., the first term of the Fourier expansion of f is 0), then so is $T_n f$.

Proof. This follows immediately from Theorems 1 and 4.

Before moving on we present another viewpoint on the definition of $T_n f$ that one may find more intuitive. We recall that given a modular form f of weight k, we can associate a function F on lattices $\Lambda \subset \mathbb{C}$, as follows. If $\Lambda = \mathbb{Z}.w_1 + \mathbb{Z}.w_2$, then $F(\Lambda) = w_2^{-k} f(w_1/w_2)$. First we show why F is well-defined. If $\Lambda = \Lambda'$ with $\Lambda' = \mathbb{Z}.w'_1 + \mathbb{Z}.w'_2$, then there is some $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ with

$$\begin{pmatrix} w'_1 \\ w'_2 \end{pmatrix} = A \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}.$$

By the transformation property of f, we have

$$F(\Lambda') = (w'_2)^{-k} f(w'_1/w'_2) = (w'_2)^{-k} f(A(w_1/w_2))$$

$$= (w'_2)^{-k} f(w_1/w_2)(c(w_1/w_2) + d) = (w'_2)^{-k} f(w_1/w_2)(cw_1 + dw_2)^k (w_2^{-k}) = w_2^{-k} f(w_1/w_2).$$

Conversely, given a function on lattices $\Lambda \to F(\Lambda)$ which transforms by $F(\lambda \Lambda) = \lambda^{-k} F(\Lambda)$, for $0 \neq \lambda \in \mathbb{C}$, we can associate a function f on \mathbb{H} by $f(z) = F(\mathbb{Z}.z + \mathbb{Z}.1)$, which is a modular form if f is holomorphic on \mathbb{H} and at infinity. We define a sequence of transformations T_n on M_k as follows. If $f \in M_k$, and F is the corresponding function on lattices indicated above, define $T_n f$ by

$$T_n F(\Lambda) = \sum F(\Lambda'),$$

where the sum ranges over all sublattices $\Lambda' \subset \Lambda$ of index n. Any such sublattice Λ' is obtained by applying an elements $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of $\Gamma(n)$ to the basis $(z, 1)$ of Λ. Thus

$$F(\Lambda') = F(\mathbb{Z}.(az + b) + \mathbb{Z}.cz + d)$$

$$= (cz + d)^{-k} F(\mathbb{Z}. \frac{az + b}{cz + d} + \mathbb{Z}.1)$$

$$= (cz + d)^{-k} f \left(\frac{az + b}{cz + d} \right).$$

Furthermore one can check that if $A \sim A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$ in the sense defined above (same orbit of Γ), then the identity

$$(cz + d)^{-k} f \left(\frac{az + b}{cz + d} \right) = (c'z + d')^{-k} f \left(\frac{a'z + b'}{c'z + d'} \right).$$
follows from the modularity of f. Thus, letting $\Gamma \backslash \Gamma(n)$ denote the equivalence classes, we have

$$T_n f(z) = \sum_{A \in \Gamma \backslash \Gamma(n)} (cz + d)^{-k} f \left(\frac{az + b}{cz + d} \right).$$

If we multiply by the normalizing constant n^{k-1} and choose representatives in $\Gamma \backslash \Gamma(n)$ of the upper-triangular form in Theorem 2 (so $c = 0$), then we obtain

$$T_n f(z) = n^{k-1} \sum_A d^{-k} f(Az) = \frac{1}{n} \sum_A d^k f(Az),$$

which agrees with (3) above.

For example, consider the simple case of $T_n f$ for $n = 2$. According to our first definition of T_n, we have

$$T_2 f(z) = 2^{k-1} \sum_{d|2} d^{-k} \sum_{b=0}^{d-1} f \left(\frac{nz + bd}{d^2} \right) = 2^{k-1} f(2z) + \frac{1}{2} f \left(\frac{z}{2} \right) + \frac{1}{2} f \left(\frac{z+1}{2} \right).$$

(4)

Now we note that $\mathbb{Z}.z + \mathbb{Z}.1$ has three sublattices of index two, namely those corresponding to the bases $(2z, 1)$, $(z, 2)$, and $(z + 1, 2)$. Hence we have

$$2^{k-1} \sum A' = 2^{k-1} \sum A (2) + 2^{k-1} \sum A (z) + 2^{k-1} \sum A (z + 1),$$

which agrees with (4).

Another interesting property of the Hecke operators is that they commute.

Theorem 6. For any two Hecke operators T_n and T_m defined on M_k, we have the composition formula

$$T_m T_n = \sum_{d|\text{lcm}(m,n)} d^{k-1} T_{mn/d^2}.$$

We omit the proof, but observe that as a consequence of the theorem T_n and T_m commute since the right-hand side is symmetric in m and n.

As an interesting application of the preceding theory we can prove a famous result of Ramanujan. By Corollary 5, $T_n f$ is a cusp form whenever f is a cusp form. Recall that the space $M_{12,0}$ of cusp forms of weight 12 is 1-dimensional, spanned by the discriminant Δ, which implies that Δ is an eigenfunction of T_n for all n. (Such a function is called a simultaneous eigenform.) The Fourier expansion of Δ is given by

$$\Delta(z) = \sum_{n=1}^{\infty} \tau(n) e^{2\pi i nz},$$

where τ is the Ramanujan function, with $\tau(1) = 1$. By Theorem 1, the Fourier expansion of $T_n \Delta$ begins with $\tau(n) e^{2\pi i nz} \ldots$, so that the eigenvalue of Δ for T_n is $\tau(n)$. In other words, $T_n \Delta = \tau(n) \Delta$ for all n. This implies that $\gamma_n(m) = \tau(n) \tau(m)$ holds for all m and n, where as in Theorem 1 $\gamma_n(m)$ is the m'th Fourier coefficient of $T_n \Delta$. Recalling the definition of $\gamma_n(m)$, we obtain

$$\tau(m) \tau(n) = \sum_{d|\text{lcm}(m,n)} d^{11} \tau \left(\frac{mn}{d^2} \right).$$
To conclude we remark that Petersson discovered that for all k, the vector space $M_{k,0}$ has a basis of simultaneous eigenforms. The outline of the proof is to introduce an inner product on the (finite-dimensional) space of cusp forms with respect to which the Hecke operators are self-adjoint. Since they also commute by Theorem 6, it follows from linear algebra they can be simultaneously diagonalized. The result can be extended to show that M_k has a basis of simultaneous eigenforms for all k.

REFERENCES
