Hecke Operators

We recall that an entire modular form of weight k is an analytic function on the upper half-plane \mathbb{H} that satisfies the transformation property

$$
f\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k} f(z)
$$

for all matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in the modular group Γ, and has a Fourier expansion $f(z)=\sum_{m=0}^{\infty} c(m) e^{2 \pi i m z}$. The fact that only non-negative powers of $e^{2 \pi i m z}$ occur in the expansion corresponds to the fact that f is holomorphic at infinity. We let M_{k} denote the set of entire modular forms of weight k and recall that M_{k} is a linear space over \mathbb{C} and is in fact finite dimensional. We are interested in the sequence of linear operators $T_{n}: M_{k} \rightarrow M_{k}$ defined as follows:

$$
T_{n} f(z)=n^{k-1} \sum_{d \mid n} d^{-k} \sum_{b=0}^{d-1} f\left(\frac{n z+b d}{d^{2}}\right)
$$

where $d \mid n$ is taken to imply that d is positive. While it's obvious that $T_{n} f$ is linear and holomorphic on \mathbb{H}, as a finite sum of holomorphic functions, it's not clear that $T_{n} f$ transforms correctly or has the right Fourier expansion. We first consider the Fourier expansion of f.

Theorem 1. If $f \in M_{k}$, and $f(z)=\sum_{m=0}^{\infty} c(m) e^{2 \pi i m z}$, then

$$
T_{m} f(z)=\sum_{m=0}^{\infty} \gamma_{n}(m) e^{2 \pi i m z}
$$

where

$$
\gamma_{n}(m)=\sum_{d \mid(n, m)} d^{k-1} c\left(\frac{m n}{d^{2}}\right) .
$$

In particular, we see that $T_{n} f$ is holomorphic at infinity.
Proof. We substitute the Fourier expansion for f into the formula for $T_{n} f$ and then rework the resulting expression so that it looks like a Fourier expansion. From $f(z)=\sum_{m=0}^{\infty} c(m) e^{2 \pi i m z}$, we see that

$$
T_{n} f(z)=n^{k-1} \sum_{d \mid n} d^{-k} \sum_{b=0}^{d-1} \sum_{m=0}^{\infty} c(m) e^{2 \pi i m(n z+b d) / d^{2}} .
$$

We first pull out the infinite sum, obtaining

$$
T_{n} f(z)=\sum_{m=0}^{\infty} \sum_{d \mid n}(n / d)^{k-1} c(m) e^{2 \pi i m n z / d^{2}}(1 / d) \sum_{b=0}^{d-1} e^{2 \pi i m b / d} .
$$

If d divides m, then the sum over b is a sum of 1 's and so is equal to d. If d does not divide m, then by the geometric sum formula, the sum over b takes the value $\left[1-e^{2 \pi i m b}\right] /\left[1-e^{2 \pi i m b / d}\right]=0$. Therefore,

$$
T_{n} f(z)=\sum_{m=0}^{\infty} \sum_{d|n, d| m}(n / d)^{k-1} c(m) e^{2 \pi i m n z / d^{2}}
$$

Setting $q=m / d$, we rewrite the above summation as

$$
T_{n} f(z)=\sum_{q=0}^{\infty} \sum_{d \mid n}(n / d)^{k-1} c(q d) e^{2 \pi i q n z / d}
$$

In the sum over d we can replace d by n / d, since each divisor of n is still included once, obtaining

$$
T_{n} f(z)=\sum_{q=0}^{\infty} \sum_{d \mid n} d^{k-1} c(q n / d) e^{2 \pi i q d z} .
$$

Now we collect, for each $m \in \mathbb{N}$, the powers $e^{2 \pi i q d z}$ of $e^{2 \pi i z}$ for which $q d=m$, obtaining

$$
T_{n} f(z)=\sum_{m=0}^{\infty} \sum_{d|n, d| m} d^{k-1} c\left(m n / d^{2}\right) e^{2 \pi i m z} .
$$

This implies the theorem, since $d \mid(n, m)$ iff $d \mid n$ and $d \mid m$.
Now we check that $T_{n} f$ transforms correctly under Γ. It will be useful to write $T_{n} f$ in another form involving only one summation. By inspection one sees that

$$
T_{n} f(z)=n^{k-1} \sum_{a \geq 1, a d=n, 0 \leq b<d} d^{-k} f\left(\frac{a z+b}{d}\right) .
$$

If we let $A z=(a z+b) / d$, then

$$
\begin{equation*}
T_{n} f(z)=\frac{1}{n} \sum_{a \geq 1, a d=n, 0 \leq b<d} a^{k} f(A z) . \tag{1}
\end{equation*}
$$

The map $z \mapsto A z$ is an example of a transformation of order n, namely a transformation of the form

$$
z \mapsto \frac{a z+b}{c z+d},
$$

where a, b, c, d are integers with $a d-b c=n$. The transformation can be represented by a matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ having determinant n in the obvious way provided we identify each matrix with its negative. We let $\Gamma(n)$ denote the set of all transformations of order n. Although $\Gamma(n)$ is not a group, we observe that $\Gamma(1)$ is the modular group Γ and in that case A acts as a mobius transformation. We can put an equivalence relation on $\Gamma(n)$ by calling to matrices A_{1} and A_{2} equivalent if they are in the same orbit of Γ under the action of left-multiplication, i.e. if $A_{1}=V A_{2}$ for some $V \in \Gamma$. We now state two basic theorems about transformations of order n. The proofs will be omitted.

Theorem 2. A set of nonequivalent elements of $\Gamma(n)$ possessing one representative per equivalence class is given by the set of matrices of the form $A=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$, where d runs through the positive divisors of n and, for each $d, a=n / d$ and b runs through a complete residue system modulo d.

Theorem 3. If $A_{1} \in \Gamma(n)$ and $V_{1} \in \Gamma$, then there exist matrices $A_{2} \in \Gamma(n)$ and $V_{2} \in \Gamma$, such that $A_{1} V_{1}=V_{2} A_{2}$. Moreover, if

$$
A_{i}=\left(\begin{array}{cc}
a_{i} & b_{i} \\
0 & d_{i}
\end{array}\right) \quad \text { and } \quad V_{i}=\left(\begin{array}{cc}
\alpha_{i} & \beta_{i} \\
\gamma_{i} & \delta_{i}
\end{array}\right)
$$

for $i=1,2$, then we have

$$
a_{1}\left(\gamma_{2} A_{2} z+\delta_{2}\right)=a_{2}\left(\gamma_{1} z+\delta_{1}\right)
$$

Note that in the summation (1), if we replace $A=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ with a matrix $A^{\prime}=\left(\begin{array}{ll}a & b^{\prime} \\ 0 & d\end{array}\right)$, where $b \equiv b^{\prime}(\bmod d)$, then the sum is unchanged, since for some integer m we have

$$
f\left(A^{\prime} z\right)=f\left(\frac{a z+b+m d}{d}\right)=f(A z+m)=f(A z)
$$

since f is invariant under translations by integers. Thus we make the observation that by Theorem 2 , we can write the sum in (1) defining $T_{n} f$ in the form

$$
\begin{equation*}
T_{n} f(z)=\frac{1}{n} \sum_{A} a^{k} f(A z) \tag{2}
\end{equation*}
$$

where A runs through a complete set of nonequivalent elements in $\Gamma(n)$ of the form described in the theorem, and for each A the coefficient a^{k} is the k 'th power of the entry a in A. We will use these results to establish the modular transformation property of $T_{n} f$.

Theorem 4. If $f \in M_{k}$, and $V=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \Gamma$, then

$$
T_{n} f(V z)=(\gamma z+\delta)^{k}\left(T_{n} f(z)\right)
$$

Proof. Let $V \in \Gamma$ be fixed. Using the representation in (2) above, we write

$$
\begin{equation*}
T_{n} f(V z)=\frac{1}{n} \sum_{A} a^{k} f(A V z) \tag{3}
\end{equation*}
$$

where $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ runs through a complete set of nonequivalent elements of $\Gamma(n)$ of the form in Theorem 3. By Theorems 2 and 3, for each A there exists matrices

$$
A^{\prime}=\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
0 & d^{\prime}
\end{array}\right) \quad \text { in } \Gamma(n) \quad \text { and } \quad V^{\prime}=\left(\begin{array}{ll}
\alpha^{\prime} & \beta^{\prime} \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right) \quad \text { in } \Gamma
$$

such that $A V=V^{\prime} A^{\prime}$ and $a\left(\gamma^{\prime} A^{\prime} z+\delta^{\prime}\right)=a^{\prime}(\gamma z+\delta)$. Therefore, $a^{k} f(A V z)=a^{k} f\left(V^{\prime} A^{\prime} z\right)$. Since f is a modular form of weight k, we have $f\left(V^{\prime} A^{\prime} z\right)=\left(\gamma^{\prime} A^{\prime} z+\delta^{\prime}\right)^{k} f\left(A^{\prime} z\right)$, so

$$
a^{k} f(A V z)=a^{k}\left(\gamma^{\prime} A z+\delta^{\prime}\right)^{k} f\left(A^{\prime} z\right)=\left(a^{\prime}\right)^{k}(\gamma z+\delta)^{k} f\left(A^{\prime} z\right)
$$

Thus, (3) becomes

$$
T_{n} f(V z)=\frac{1}{n}(\gamma z+\delta)^{k} \sum_{A}\left(a^{\prime}\right)^{k} f\left(A^{\prime} z\right)
$$

It is easy to show that given $A, B \in \Gamma(n)$, we have $A^{\prime} \sim B^{\prime}$ iff $A \sim B$, so as A runs through a complete set of nonequivalent elements of $\Gamma(n)$, so does A^{\prime}. Thus we have

$$
T_{n} f(V z)=\frac{1}{n}(\gamma z+\delta)^{k} \sum_{A^{\prime}}\left(a^{\prime}\right)^{k} f\left(A^{\prime} z\right)=(\gamma z+\delta)^{k}\left(T_{n} f(z)\right)
$$

Corollary 5. If $f \in M_{k}$, then $T_{n} f \in M_{k}$ for all n. If f is a cusp form (i.e., the first term of the Fourier expansion of f is 0), then so is $T_{n} f$.

Proof. This follows immediately from Theorems 1 and 4.
Before moving on we present another viewpoint on the definition of $T_{n} f$ that one may find more intuitive. We recall that given a modular form f of weight k, we can associate a function F on lattices $\Lambda \subset \mathbb{C}$, as follows. If $\Lambda=\mathbb{Z} \cdot w_{1}+\mathbb{Z} \cdot w_{2}$, then $F(\Lambda)=w_{2}^{-k} f\left(w_{1} / w_{2}\right)$. First we show why F is well-defined. If $\Lambda=\Lambda^{\prime}$ with $\Lambda^{\prime}=\mathbb{Z} \cdot w_{1}^{\prime}+\mathbb{Z} \cdot w_{2}^{\prime}$, then there is some $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ with $\binom{w_{1}^{\prime}}{w_{2}^{\prime}}=A\binom{w_{1}}{w_{2}}$. By the transformation property of f, we have

$$
\begin{gathered}
F\left(\Lambda^{\prime}\right)=\left(w_{2}^{\prime}\right)^{-k} f\left(w_{1}^{\prime} / w_{2}^{\prime}\right)=\left(w_{2}^{\prime}\right)^{-k} f\left(A\left(w_{1} / w_{2}\right)\right) \\
=\left(w_{2}^{\prime}\right)^{-k} f\left(w_{1} / w_{2}\right)\left(c\left(w_{1} / w_{2}\right)+d\right)^{k}=\left(w_{2}^{\prime}\right)^{-k} f\left(w_{1} / w_{2}\right)\left(c w_{1}+d w_{2}\right)^{k}\left(w_{2}^{-k}\right)=w_{2}^{-k} f\left(w_{1} / w_{2}\right) .
\end{gathered}
$$

Conversely, given a function on lattices $\Lambda \rightarrow F(\Lambda)$ which transforms by $F(\lambda \Lambda)=\lambda^{-k} F(\Lambda)$, for $0 \neq \lambda \in \mathbb{C}$, we can associate a function f on \mathbb{H} by $f(z)=F(\mathbb{Z} . z+\mathbb{Z} .1)$, which is a modular form if f is holomorphic on \mathbb{H} and at infinity. We define a sequence of transformations T_{n} on M_{k} as follows. If $f \in M_{k}$, and F is the corresponding function on lattices indicated above, define $T_{n} f$ by

$$
T_{n} F(\Lambda)=\sum F\left(\Lambda^{\prime}\right),
$$

where the sum ranges over all sublattices $\Lambda^{\prime} \subset \Lambda$ of index n. Any such sublattice Λ^{\prime} is obtained by applying an elements $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of $\Gamma(n)$ to the basis $(z, 1)$ of Λ. Thus

$$
\begin{aligned}
F\left(\Lambda^{\prime}\right) & =F(\mathbb{Z} \cdot(a z+b)+\mathbb{Z} \cdot(c z+d)) \\
& =(c z+d)^{-k} F\left(\mathbb{Z} \cdot\left(\frac{a z+b}{c z+d}\right)+\mathbb{Z} \cdot 1\right) \\
& =(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right) .
\end{aligned}
$$

Furthermore one can check that if $A \sim A^{\prime}=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$ in the sense defined above (same orbit of Γ), then the identity

$$
(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right)=\left(c^{\prime} z+d^{\prime}\right)^{-k} f\left(\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}}\right)
$$

follows from the modularity of f. Thus, letting $\Gamma \backslash \Gamma(n)$ denote the equivalence classes, we have

$$
T_{n} f(z)=\sum_{A \in \Gamma \backslash \Gamma(n)}(c z+d)^{-k} f\left(\frac{a z+b}{c z+d}\right) .
$$

If we multiply by the normalizing constant n^{k-1} and choose representatives in $\Gamma \backslash \Gamma(n)$ of the uppertriangular form in Theorem 2 (so $c=0$), then we obtain

$$
T_{n} f(z)=n^{k-1} \sum_{A} d^{-k} f(A z)=\frac{1}{n} \sum_{A} a^{k} f(A z)
$$

which agrees with (3) above.
For example, consider the simple case of $T_{n} f$ for $n=2$. According to our first definition of T_{n}, we have

$$
\begin{equation*}
T_{2} f(z)=2^{k-1} \sum_{d \mid 2} d^{-k} \sum_{b=0}^{d-1} f\left(\frac{n z+b d}{d^{2}}\right)=2^{k-1} f(2 z)+\frac{1}{2} f\left(\frac{z}{2}\right)+\frac{1}{2} f\left(\frac{z+1}{2}\right) \tag{4}
\end{equation*}
$$

Now we note that $\mathbb{Z} . z+\mathbb{Z} .1$ has three sublattices of index two, namely those corresponding to the bases $(2 z, 1),(z, 2)$, and $(z+1,2)$. Hence we have

$$
\begin{aligned}
2^{k-1} \sum F\left(\Lambda^{\prime}\right) & =2^{k-1}[F(\mathbb{Z} .2 z+\mathbb{Z} .1)+F(\mathbb{Z} . z+\mathbb{Z} .2)+F(\mathbb{Z} \cdot(z+1)+\mathbb{Z} .2)] \\
& =2^{k-1}\left[f(2 z)+2^{-k} f\left(\frac{z}{2}\right)+2^{-k} f\left(\frac{z+1}{2}\right)\right]
\end{aligned}
$$

which agrees with (4).
Another interesting property of the Hecke operators is that they commute.
Theorem 6. For any two Hecke operators T_{n} and T_{m} defined on M_{k}, we have the composition formula

$$
T_{m} T_{n}=\sum_{d \mid(m, n)} d^{k-1} T_{m n / d^{2}}
$$

We omit the proof, but observe that as a consequence of the theorem T_{n} and T_{m} commute since the right-hand side is symmetric in m and n.

As an interesting application of the preceeding theory we can prove a famous result of Ramanujan. By Corollary $5, T_{n} f$ is a cusp form whenever f is a cusp form. Recall that the space $M_{12,0}$ of cusp forms of weight 12 is 1 -dimensional, spanned by the discriminant Δ, which implies that Δ is an eigenfunction of T_{n} for all n. (Such a function is called a simultaneous eigenform.) The Fourier expansion of Δ is given by

$$
\Delta(z)=\sum_{n=1}^{\infty} \tau(n) e^{2 \pi i n z}
$$

where τ is the Ramanujan function, with $\tau(1)=1$. By Theorem 1, the Fourier expansion of $T_{n} \Delta$ begins with $\tau(n) e^{2 \pi i z} \ldots$, so that the eigenvalue of Δ for T_{n} is $\tau(n)$. In other words, $T_{n} \Delta=\tau(n) \Delta$ for all n. This implies that $\gamma_{n}(m)=\tau(n) \tau(m)$ holds for all m and n, where as in Theorem $1 \gamma_{n}(m)$ is the m 'th Fourier coefficient of $T_{n} \Delta$. Recalling the definition of $\gamma_{n}(m)$, we obtain

$$
\tau(m) \tau(n)=\sum_{d \mid(n, m)} d^{11} \tau\left(\frac{m n}{d^{2}}\right) .
$$

To conclude we remark that Petersson discovered that for all k, the vector space $M_{k, 0}$ has a basis of simultaneous eigenforms. The outline of the proof is to introduce an inner product on the (finite-dimensional) space of cusp forms with respect to which the Hecke operators are self-adjoint. Since they also commute by Theorem 6 , it follows from linear algebra they can be simultaneously diagonalized. The result can be extended to show that M_{k} has a basis of simultaneous eigenforms for all k.

REFERENCES

[1]Apostol, Tom. Modular Functions and Dirichlet Series in Number Theory. Springer-Verlag, New York, 1990.
[2]Zagier, Don. Elliptic Modular Forms and Their Applications (from the book, The 1-2-3 of Modular Forms). Springer-Verlag, Berlin, 2008.

