
Hecke Operators

We recall that an entire modular form of weight k is an analytic function on the upper half-plane
H that satisfies the transformation property

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all matrices

(
a b
c d

)
in the modular group Γ, and has a Fourier expansion f(z) =

∑∞
m=0 c(m)e2πimz.

The fact that only non-negative powers of e2πimz occur in the expansion corresponds to the fact
that f is holomorphic at infinity. We let Mk denote the set of entire modular forms of weight k
and recall that Mk is a linear space over C and is in fact finite dimensional. We are interested in
the sequence of linear operators Tn : Mk →Mk defined as follows:

Tnf(z) = nk−1
∑
d|n

d−k
d−1∑
b=0

f

(
nz + bd

d2

)
,

where d|n is taken to imply that d is positive. While it’s obvious that Tnf is linear and holomorphic
on H, as a finite sum of holomorphic functions, it’s not clear that Tnf transforms correctly or has
the right Fourier expansion. We first consider the Fourier expansion of f .

Theorem 1. If f ∈Mk, and f(z) =
∑∞

m=0 c(m)e2πimz, then

Tmf(z) =
∞∑
m=0

γn(m)e2πimz,

where
γn(m) =

∑
d|(n,m)

dk−1c
(mn
d2

)
.

In particular, we see that Tnf is holomorphic at infinity.

Proof. We substitute the Fourier expansion for f into the formula for Tnf and then rework the
resulting expression so that it looks like a Fourier expansion. From f(z) =

∑∞
m=0 c(m)e2πimz, we

see that

Tnf(z) = nk−1
∑
d|n

d−k
d−1∑
b=0

∞∑
m=0

c(m)e2πim(nz+bd)/d2 .

We first pull out the infinite sum, obtaining

Tnf(z) =
∞∑
m=0

∑
d|n

(n/d)k−1c(m)e2πimnz/d2(1/d)
d−1∑
b=0

e2πimb/d.

If d divides m, then the sum over b is a sum of 1’s and so is equal to d. If d does not divide m,
then by the geometric sum formula, the sum over b takes the value [1− e2πimb]/[1− e2πimb/d] = 0.
Therefore,

Tnf(z) =
∞∑
m=0

∑
d|n,d|m

(n/d)k−1c(m)e2πimnz/d2 .
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Setting q = m/d, we rewrite the above summation as

Tnf(z) =
∞∑
q=0

∑
d|n

(n/d)k−1c(qd)e2πiqnz/d.

In the sum over d we can replace d by n/d, since each divisor of n is still included once, obtaining

Tnf(z) =

∞∑
q=0

∑
d|n

dk−1c(qn/d)e2πiqdz.

Now we collect, for each m ∈ N, the powers e2πiqdz of e2πiz for which qd = m, obtaining

Tnf(z) =
∞∑
m=0

∑
d|n,d|m

dk−1c(mn/d2)e2πimz.

This implies the theorem, since d|(n,m) iff d|n and d|m.

Now we check that Tnf transforms correctly under Γ. It will be useful to write Tnf in another form
involving only one summation. By inspection one sees that

Tnf(z) = nk−1
∑

a≥1, ad=n, 0≤b<d
d−kf

(
az + b

d

)
.

If we let Az = (az + b)/d, then

Tnf(z) =
1

n

∑
a≥1, ad=n, 0≤b<d

akf(Az). (1)

The map z 7→ Az is an example of a transformation of order n, namely a transformation of the
form

z 7→ az + b

cz + d
,

where a, b, c, d are integers with ad − bc = n. The transformation can be represented by a matrix

A =

(
a b
c d

)
having determinant n in the obvious way provided we identify each matrix with its

negative. We let Γ(n) denote the set of all transformations of order n. Although Γ(n) is not a group,
we observe that Γ(1) is the modular group Γ and in that case A acts as a mobius transformation.
We can put an equivalence relation on Γ(n) by calling to matrices A1 and A2 equivalent if they are
in the same orbit of Γ under the action of left-multiplication, i.e. if A1 = V A2 for some V ∈ Γ. We
now state two basic theorems about transformations of order n. The proofs will be omitted.

Theorem 2. A set of nonequivalent elements of Γ(n) possessing one representative per equivalence

class is given by the set of matrices of the form A =

(
a b
0 d

)
, where d runs through the positive

divisors of n and, for each d, a = n/d and b runs through a complete residue system modulo d.
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Theorem 3. If A1 ∈ Γ(n) and V1 ∈ Γ, then there exist matrices A2 ∈ Γ(n) and V2 ∈ Γ, such that
A1V1 = V2A2. Moreover, if

Ai =

(
ai bi
0 di

)
and Vi =

(
αi βi
γi δi

)
for i = 1, 2, then we have

a1(γ2A2z + δ2) = a2(γ1z + δ1).

Note that in the summation (1), if we replace A =

(
a b
0 d

)
with a matrix A′ =

(
a b′

0 d

)
, where

b ≡ b′ (mod d), then the sum is unchanged, since for some integer m we have

f(A′z) = f

(
az + b+md

d

)
= f(Az +m) = f(Az),

since f is invariant under translations by integers. Thus we make the observation that by Theorem
2, we can write the sum in (1) defining Tnf in the form

Tnf(z) =
1

n

∑
A

akf(Az), (2)

where A runs through a complete set of nonequivalent elements in Γ(n) of the form described in
the theorem, and for each A the coefficient ak is the k’th power of the entry a in A. We will use
these results to establish the modular transformation property of Tnf.

Theorem 4. If f ∈Mk, and V =

(
α β
γ δ

)
∈ Γ, then

Tnf(V z) = (γz + δ)k(Tnf(z)).

Proof. Let V ∈ Γ be fixed. Using the representation in (2) above, we write

Tnf(V z) =
1

n

∑
A

akf(AV z), (3)

where A =

(
a b
c d

)
runs through a complete set of nonequivalent elements of Γ(n) of the form in

Theorem 3. By Theorems 2 and 3, for each A there exists matrices

A′ =

(
a′ b′

0 d′

)
in Γ(n) and V ′ =

(
α′ β′

γ′ δ′

)
in Γ,

such that AV = V ′A′ and a(γ′A′z + δ′) = a′(γz + δ). Therefore, akf(AV z) = akf(V ′A′z). Since f
is a modular form of weight k, we have f(V ′A′z) = (γ′A′z + δ′)kf(A′z), so

akf(AV z) = ak(γ′Az + δ′)kf(A′z) = (a′)k(γz + δ)kf(A′z).

Thus, (3) becomes

Tnf(V z) =
1

n
(γz + δ)k

∑
A

(a′)kf(A′z).
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It is easy to show that given A,B ∈ Γ(n), we have A′ ∼ B′ iff A ∼ B, so as A runs through a
complete set of nonequivalent elements of Γ(n), so does A′. Thus we have

Tnf(V z) =
1

n
(γz + δ)k

∑
A′

(a′)kf(A′z) = (γz + δ)k(Tnf(z)).

Corollary 5. If f ∈ Mk, then Tnf ∈ Mk for all n. If f is a cusp form (i.e., the first term of the
Fourier expansion of f is 0), then so is Tnf.

Proof. This follows immediately from Theorems 1 and 4.

Before moving on we present another viewpoint on the definition of Tnf that one may find more
intuitive. We recall that given a modular form f of weight k, we can associate a function F on
lattices Λ ⊂ C, as follows. If Λ = Z.w1 + Z.w2, then F (Λ) = w−k2 f(w1/w2). First we show why

F is well-defined. If Λ = Λ′ with Λ′ = Z.w′1 + Z.w′2, then there is some A =

(
a b
c d

)
∈ Γ with(

w′1
w′2

)
= A

(
w1

w2

)
. By the transformation property of f , we have

F (Λ′) = (w′2)−kf(w′1/w
′
2) = (w′2)−kf(A(w1/w2))

= (w′2)−kf(w1/w2)(c(w1/w2) + d)k = (w′2)−kf(w1/w2)(cw1 + dw2)k(w−k2 ) = w−k2 f(w1/w2).

Conversely, given a function on lattices Λ → F (Λ) which transforms by F (λΛ) = λ−kF (Λ), for
0 6= λ ∈ C, we can associate a function f on H by f(z) = F (Z.z + Z.1), which is a modular form
if f is holomorphic on H and at infinity. We define a sequence of transformations Tn on Mk as
follows. If f ∈Mk, and F is the corresponding function on lattices indicated above, define Tnf by

TnF (Λ) =
∑

F (Λ′),

where the sum ranges over all sublattices Λ′ ⊂ Λ of index n. Any such sublattice Λ′ is obtained by

applying an elements A =

(
a b
c d

)
of Γ(n) to the basis (z, 1) of Λ. Thus

F (Λ′) = F (Z.(az + b) + Z.(cz + d))

= (cz + d)−kF (Z.
(
az + b

cz + d

)
+ Z.1)

= (cz + d)−kf

(
az + b

cz + d

)
.

Furthermore one can check that if A ∼ A′ =

(
a′ b′

c′ d′

)
in the sense defined above (same orbit of

Γ), then the identity

(cz + d)−kf

(
az + b

cz + d

)
= (c′z + d′)−kf

(
a′z + b′

c′z + d′

)
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follows from the modularity of f . Thus, letting Γ\Γ(n) denote the equivalence classes, we have

Tnf(z) =
∑

A∈Γ\Γ(n)

(cz + d)−kf

(
az + b

cz + d

)
.

If we multiply by the normalizing constant nk−1 and choose representatives in Γ\Γ(n) of the upper-
triangular form in Theorem 2 (so c = 0), then we obtain

Tnf(z) = nk−1
∑
A

d−kf(Az) =
1

n

∑
A

akf(Az),

which agrees with (3) above.

For example, consider the simple case of Tnf for n = 2. According to our first definition of Tn, we
have

T2f(z) = 2k−1
∑
d|2

d−k
d−1∑
b=0

f

(
nz + bd

d2

)
= 2k−1f(2z) +

1

2
f
(z

2

)
+

1

2
f

(
z + 1

2

)
. (4)

Now we note that Z.z + Z.1 has three sublattices of index two, namely those corresponding to the
bases (2z, 1), (z, 2), and (z + 1, 2). Hence we have

2k−1
∑

F (Λ′) =2k−1 [F (Z.2z + Z.1) + F (Z.z + Z.2) + F (Z.(z + 1) + Z.2)]

=2k−1

[
f(2z) + 2−kf

(z
2

)
+ 2−kf

(
z + 1

2

)]
,

which agrees with (4).
Another interesting property of the Hecke operators is that they commute.

Theorem 6. For any two Hecke operators Tn and Tm defined on Mk, we have the composition
formula

TmTn =
∑

d|(m,n)

dk−1Tmn/d2 .

We omit the proof, but observe that as a consequence of the theorem Tn and Tm commute since
the right-hand side is symmetric in m and n.

As an interesting application of the preceeding theory we can prove a famous result of Ramanujan.
By Corollary 5, Tnf is a cusp form whenever f is a cusp form. Recall that the space M12,0 of cusp
forms of weight 12 is 1-dimensional, spanned by the discriminant ∆, which implies that ∆ is an
eigenfunction of Tn for all n. (Such a function is called a simultaneous eigenform.) The Fourier
expansion of ∆ is given by

∆(z) =

∞∑
n=1

τ(n)e2πinz,

where τ is the Ramanujan function, with τ(1) = 1. By Theorem 1, the Fourier expansion of Tn∆
begins with τ(n)e2πiz..., so that the eigenvalue of ∆ for Tn is τ(n). In other words, Tn∆ = τ(n)∆
for all n. This implies that γn(m) = τ(n)τ(m) holds for all m and n, where as in Theorem 1 γn(m)
is the m’th Fourier coefficient of Tn∆. Recalling the definition of γn(m), we obtain

τ(m)τ(n) =
∑

d|(n,m)

d11τ
(mn
d2

)
.
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To conclude we remark that Petersson discovered that for all k, the vector space Mk,0 has a basis
of simultaneous eigenforms. The outline of the proof is to introduce an inner product on the
(finite-dimensional) space of cusp forms with respect to which the Hecke operators are self-adjoint.
Since they also commute by Theorem 6, it follows from linear algebra they can be simultaneously
diagonalized. The result can be extended to show that Mk has a basis of simultaneous eigenforms
for all k.
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