Hecke Operators

We recall that an entire modular form of weight k is an analytic function on the upper half-plane
H that satisfies the transformation property
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for all matrices <(Z Z) in the modular group I', and has a Fourier expansion f(z) = > c(m)e

The fact that only non-negative powers of €2™™* occur in the expansion corresponds to the fact

that f is holomorphic at infinity. We let M}, denote the set of entire modular forms of weight &
and recall that M, is a linear space over C and is in fact finite dimensional. We are interested in
the sequence of linear operators T;, : My — M), defined as follows:
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where d|n is taken to imply that d is positive. While it’s obvious that T;, f is linear and holomorphic
on H, as a finite sum of holomorphic functions, it’s not clear that T}, f transforms correctly or has
the right Fourier expansion. We first consider the Fourier expansion of f.

Theorem 1. If f € My, and f(z) = Y or_, c(m)e*™™* then
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where
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In particular, we see that T, f is holomorphic at infinity.

Proof. We substitute the Fourier expansion for f into the formula for T, f and then rework the
resulting expression so that it looks like a Fourier expansion. From f(z) = > 0°_, c¢(m)e?™™?, we
see that
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We first pull out the infinite sum, obtaining
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If d divides m, then the sum over b is a sum of 1’s and so is equal to d. If d does not divide m,
then by the geometric sum formula, the sum over b takes the value [1 — e2™0]/[1 — e27imb/d) — (),

Therefore,
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Setting ¢ = m/d, we rewrite the above summation as

Tf() = 30 S nfd) efgd)emion=/1,
q=0 djn
In the sum over d we can replace d by n/d, since each divisor of n is still included once, obtaining
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T.f(z) = Z Z d*Le(qn/d)e? a4z,

q=0 d|n
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Now we collect, for each m € N, the powers e e?™ for which qd = m, obtaining
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T.f(z) = Z Z d*te(mn/d?)e*mim?,

m=0 d|n,d|m

This implies the theorem, since d|(n,m) iff d|n and d|m. O

Now we check that T, f transforms correctly under I'. It will be useful to write T}, f in another form
involving only one summation. By inspection one sees that

Tz ="t Sty (“'Z; b> .

a>1,ad=n,0<b<d

If we let Az = (az +b)/d, then

Tf(s) =~ S dfae). (1)

n
a>1,ad=n,0<b<d

The map z — Az is an example of a transformation of order n, namely a transformation of the

form
az+b

cz+d’

where a, b, ¢, d are integers with ad — bc = n. The transformation can be represented by a matrix

A= <Z d) having determinant n in the obvious way provided we identify each matrix with its

negative. We let I'(n) denote the set of all transformations of order n. Although I'(n) is not a group,
we observe that I'(1) is the modular group I' and in that case A acts as a mobius transformation.
We can put an equivalence relation on I'(n) by calling to matrices A; and Ag equivalent if they are
in the same orbit of I' under the action of left-multiplication, i.e. if A1 = V Ay for some V € . We
now state two basic theorems about transformations of order n. The proofs will be omitted.

Theorem 2. A set of nonequivalent elements of I'(n) possessing one representative per equivalence
a b
0 d
divisors of n and, for each d, @ = n/d and b runs through a complete residue system modulo d.

class is given by the set of matrices of the form A = < > , where d runs through the positive



Theorem 3. If A; € I'(n) and V; € I, then there exist matrices As € I'(n) and V2 € T, such that
A1V1 = Vo As. Moreover, if
_ bi (i B
Ai= (0 d) and VZ(%’ 5i>

a1(y2Az2z + 82) = aa(y1z + d1).

for i = 1,2, then we have

/

a b ), where

Note that in the summation (1), if we replace A = <g Z) with a matrix A" = <0 J

b=V (mod d), then the sum is unchanged, since for some integer m we have

) = f (BN = s m) = f(49),

since f is invariant under translations by integers. Thus we make the observation that by Theorem
2, we can write the sum in (1) defining 7}, f in the form

= 3 dkp(a), (2)
A

where A runs through a complete set of nonequivalent elements in I'(n) of the form described in
the theorem, and for each A the coefficient a* is the k’th power of the entry a in A. We will use
these results to establish the modular transformation property of T, f.

Theorem 4. If f € My, and V = (j §> €I, then

Tof(V2) = (v2 +8)M(T0f ().

Proof. Let V €T be fixed. Using the representation in (2) above, we write

T,f(V2) = = 3k f(Av), )
A

where A = Ccl Z) runs through a complete set of nonequivalent elements of I'(n) of the form in

Theorem 3. By Theorems 2 and 3, for each A there exists matrices
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A’;(% Z,) in [(n) and V’:(j, ?,) in T,

such that AV = V'A’ and a(y' A’z 4 &) = a/(yz + 0). Therefore, a f(AVz) = a* f(V'A’%). Since f
is a modular form of weight k, we have f(V'A'z) = (v A’z + &) f(A'2), so

ab f(AV2) = aF (Y Az + )P f(A'2) = (a)*(yz + 0)F f(A'2).

Thus, (3) becomes
T.f(Vz)= ’yz+5kz
A
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It is easy to show that given A, B € I'(n), we have A’ ~ B" iff A ~ B, so as A runs through a
complete set of nonequivalent elements of I'(n), so does A’. Thus we have

T, f(V2) = (32 + 6 S (@) F(A'2) = (72 + M T ().
.

O
Corollary 5. If f € My, then T,,f € My, for all n. If f is a cusp form (i.e., the first term of the
Fourier expansion of f is 0), then so is T, f.

Proof. This follows immediately from Theorems 1 and 4. O

Before moving on we present another viewpoint on the definition of T}, f that one may find more
intuitive. We recall that given a modular form f of weight k, we can associate a function F' on
lattices A C C, as follows. If A = Z.wy + Z.wg, then F(A) = wy* f(w; /ws). First we show why

F is well-defined. If A = A’ with A’ = Z.w) + Z.w}, then there is some A = <CCL Z) € I' with

/
(Qwu,l) =A <Zl> . By the transformation property of f, we have
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F(A') = (wy) ™" f(w)/wh) = (wh) ™ f(Awr/w2))

= (wh) ~* f (w1 /w2) (c(wi /w2) + d) = (wh) ™" f(w/wa)(cwr + dwa)* (w3 *) = wy " f (w1 /w2).

Conversely, given a function on lattices A — F(A) which transforms by F(AA) = A"FF(A), for
0 # X\ € C, we can associate a function f on H by f(z) = F(Z.z + Z.1), which is a modular form
if f is holomorphic on H and at infinity. We define a sequence of transformations T, on M} as
follows. If f € My, and F is the corresponding function on lattices indicated above, define T}, f by

T.F(A) =) F(A),

where the sum ranges over all sublattices A’ C A of index n. Any such sublattice A’ is obtained by

applying an elements A = <Z Z) of I'(n) to the basis (z,1) of A. Thus

F(\')=F(Z.(az 4+ b) + Z.(cz + d))

az + b) +7.1)

cz+d

— (cz+d)"f (Zji;)

= (cz+d)"F(Z. (
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Furthermore one can check that if A ~ A" = (CCL, d’) in the sense defined above (same orbit of

'), then the identity

ke faz+b\ ke [A 2V
(c2+4d) f(cz+d>_(cz+d) f(c’z—i—d’



follows from the modularity of f. Thus, letting I'\I'(n) denote the equivalence classes, we have

T = Y (cz+d)tf (“Z + b) .

A€D\I'(n) cz+d

If we multiply by the normalizing constant n*~! and choose representatives in I'\I'(n) of the upper-
triangular form in Theorem 2 (so ¢ = 0), then we obtain

T, f(z) = nk~ IZd Ff(Az) = Zakf Az),

which agrees with (3) above.

For example, consider the simple case of T, f for n = 2. According to our first definition of T},, we

have
Tf(2) =2 Y- ’“Zf(””bd) — ey () vy (G5) @
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Now we note that Z.z + Z.1 has three sublattices of index two, namely those corresponding to the
bases (2z,1),(2,2), and (z + 1,2). Hence we have

251N CF(N) =28V [F(Z.22 + Z.1) + F(Z.2 + Z.2) + F(Z.(2 + 1) + Z.2)]
—ok-1 [f(2z) +27Ff (g) +27Ff (Z; 1)] ,

which agrees with (4).

Another interesting property of the Hecke operators is that they commute.

Theorem 6. For any two Hecke operators T;, and T, defined on M}, we have the composition
formula

T T, = Z A" T e
d|(m,n)

We omit the proof, but observe that as a consequence of the theorem 7,, and T}, commute since
the right-hand side is symmetric in m and n.

As an interesting application of the preceeding theory we can prove a famous result of Ramanujan.
By Corollary 5, T}, f is a cusp form whenever f is a cusp form. Recall that the space Mis o of cusp
forms of weight 12 is 1-dimensional, spanned by the discriminant A, which implies that A is an
eigenfunction of T}, for all n. (Such a function is called a simultaneous eigenform.) The Fourier

expansion of A is given by
[e.¢]
E :7_ 27rmz
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where 7 is the Ramanujan function, with 7(1) = 1. By Theorem 1, the Fourier expansion of T, A
begins with 7(n)e?™=...; so that the eigenvalue of A for T;, is 7(n). In other words, T,,A = 7(n)A
for all n. This implies that v, (m) = 7(n)7(m) holds for all m and n, where as in Theorem 1 7, (m)
is the m’th Fourier coefficient of T,,A. Recalling the definition of v, (m), we obtain

r(m)r(n) = Y dlr (55



To conclude we remark that Petersson discovered that for all k, the vector space My, o has a basis
of simultaneous eigenforms. The outline of the proof is to introduce an inner product on the
(finite-dimensional) space of cusp forms with respect to which the Hecke operators are self-adjoint.
Since they also commute by Theorem 6, it follows from linear algebra they can be simultaneously

diagonalized. The result can be extended to show that M} has a basis of simultaneous eigenforms
for all k.
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