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MAT 205B Nevanlinna Theory

The theory aims to describe the value distribution of meromorphic functions by looking at

various formulae connecting the values of meromorphic functions with the distribution of

its zeros and poles. In the beginning we will derive some of these formulae and later use

them to get some connections with main ”characteristics” of meromorphic functions. In the

next section we will describe some preliminary results which will prove useful in our later

endeavors.

1 Preliminary Results

Let D be a bounded region with boundary Γ consisting of piecewise analytic curves, ∂
∂n

denote the differentiation along inwardly directed normal vector to Γ, and ∆ be the 2-D

Laplacian operator. The following formula is called the second Green’s formula∫ ∫
D

(u∆v − v∆u)dσ = −
∫

Γ

(
u
∂v

∂n
− v ∂u

∂n

)
dl (1)

The above formula can be derived from the regular Green’s formula by applying it to

(−u∂v
∂y
, u ∂v

∂x
) ∫ ∫

D

(
u∆v +

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dσ =

∫
Γ

−u∂v
∂n
dl

Reversing u and v and subtracting we get the second Green’s formula. Next we need the

concept of Green’s function. On a domain D the Green’s function is a function G(ζ, z)

defined for ζ, z ∈ D, ζ 6= z, satisfying the following

1. For each z ∈ D
G(ζ, z) = − ln |ζ − z|+ hz(ζ)

where hz is a harmonic function in D and continuous in D.

2. If ζ ∈ Γ, z ∈ D or vice-versa

G(ζ, z) = 0

The Green’s function is unique which can be seen by considering two Green’s functions G

and H. Using the properties of Green’s function the function v(ζ) = G(ζ, z) − H(ζ, z) is

harmonic and continuous in D̄. Also it is zero on the boundary of D. By the maximum

and minimum modulus principle of harmonic functions, v has to be zero everywhere. Hence

G=H. Using the max and min principle we can also show that Green’s function is greater

than 0 for ζ, z ∈ D.

For simply connected domains the existence can be proved by using Riemann mapping

theorem. This gives us a conformal function from D onto unit disc w(ζ) = fz(ζ) such that

fz(z) = 0. This function is continuous on D̄ and has modulus 1 on the boundary. Then the

Green’s function is given by

G(ζ, z) = ln
1

|fz(ζ)|
(2)
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Example 1.1.

1. For D = {|ζ| < R}. Then

G(ζ, z) = ln

∣∣∣∣ R2 − ζz̄
R(ζ − z)

∣∣∣∣ (3)

2. For D = {|ζ| < R, Imζ > 0}. Then

G(ζ, z) = ln

∣∣∣∣ R2 − ζz̄
R(ζ − z)

R(ζ − z̄
R2 − ζz

∣∣∣∣ (4)

Suppose D be a simply connected region. Let γ1, γ2, ..., γp be the analytic curves forming Γ.

Let Al, l=1,2,...,p be the common end points of these curves, let παl(0 < αl < 2) be the

angles between γl and γl+1(γp+1 = γ1). Then fz has an extension to a domain containing

D̄\{A1, ...Ap}. We wil assume that in a sufficiently small neighborhood Ul of Al, fz has a

representation

fz(ζ) = (ζ − Al)
1
αl φl(ζ) + wl (5)

with φl analytic in Ul, φl(Al) 6= 0 and |wl| = 1. For our purpose it is enough to see that that

this is true for the two domains in example (1.1).

Since G(ζ, z) > 0 for ζ, z ∈ D and G is zero on the boundary, ∂G
∂n

> 0. Along the curve we

have
f ′z(ζ)

fz(ζ
dζ = i

∂G

∂n
dl(ζ 6= Al) (6)

This can be proved by taking the logarithmic derivative of fz and using the fact that |fz(ζ)| =
1 on the boundary. Then using Cauchy Riemann equations we can get the above equation.

Theorem 1.2. Let D be a simply connected domain with a piecewise analytic boundary Γ,

and let u(z) be a twice continuously differentiable function in some domain containing D̄,

excluding a finite set of points {c1, c2, ...cq} ⊂ D̄. In a neighborhood of these points u has

the form

u(z) = dk ln |z − ck|+ uk(z) (7)

where dk are constants and uk is a twice continuously differentiable function in a neighbor-

hood of the point ck. Then

u(z) +
1

2π

∫ ∫
D

G(ζ, z)∆u(ζ)dσ =
1

2π

∫
Γ

u(ζ)
∂G

∂n
ds−

∑
ck∈D

dkG(ck, z) (8)

Proof. Let us exclude from D the discs of radius ε centered at c1, ..., cq, z, A1, ..Ap. We

construct the discs such that there is no overlap between the discs and if the center of the

discs is in D then the whole disc is in D. Let the domain obtained be Dε and the part of Γ

not in any of the discs by Γε. By C(ε, a) we denote the intersection of {z : |z − a| = ε} and

D.
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Letting u=u(ζ) and v=G(ζ, z) in the second Green’s formula and observing that ∆v = 0 we

get ∫ ∫
Dε

v∆udσ =

(∫
Γε

+

∫
C(ε,z)

+

q∑
k=1

∫
C(ε,ck)

+

p∑
l=1

∫
C(ε,Al)

)(
u
∂v

∂n
− v ∂u

∂n
ds

)
(9)

If any of Al matches with ck we consider it only once. Let us find the limits as ε→ 0. Since

v=0 on Γ we have

lim
ε→0

∫
Γε

(
u
∂v

∂n
− v ∂u

∂n

)
ds =

∫
Γ

u(ζ)
∂G

∂n

By using mean value theorem we have for a ∈ D̄∫
C(ε,a)

(
u
∂v

∂n
− v ∂u

∂n
ds

)
= (length of C(ε, a))

(
u
∂v

∂n
− v ∂u

∂n
ds

)∣∣∣∣
ζ∗

ζ∗ being a point on C(ε, a). Length of C(ε, z) is 2πε and we have the following estimates as

ε→ 0

v = ln 1
ε

+O(1), ∂v
∂n

= −1
ε

+O(1), u = u(z) + o(1), ∂u
∂n

= O(1)

then,

lim
ε→o

∫
C(ε,a)

(
u
∂v

∂n
− v ∂u

∂n

)
ds = −2πu(z) (10)

If ck ∈ D, then on C(ε, ck), we have the following estimates

u = dk ln ε+O(1), ∂u
∂n

= dk
ε

+O(1),

v = G(ck, z) + o(1), ∂v
∂n

= O(1)

Therefore for ck ∈ D we have

lim
ε→o

∫
C(ε,ck)

(
u
∂v

∂n
− v ∂u

∂n

)
ds = −2πdkG(ck, z)

If a is one of the points ck belonging to the boundary or one of the points A1, ..Ap, the length

of (C(ε, a) < 2πε and the following estimates are valid

u = O(| ln ε|), ∂u
∂n

= O(1
ε
), v = o(1), ∂v

∂n
= O( 1√

ε
)

The last of these comes from equation 5. Hence we have

lim
ε→o

∫
C(ε,ck)

(
u
∂v

∂n
− v ∂u

∂n

)
ds = 0

Now taking limit ε→ 0 in equation 9 we get the statement of the theorem.

2 Poisson Jensen formulae

In this and the next sections we will prove a bunch of formulae connecting the behavior of

meromorphic function to their zeros and poles. Most of these are special cases of 8.
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Theorem 2.1. Let D be a simply connected region with a piecewise analytic boundary Γ

and f(z) 6≡ 0 meromorphic function in D̄. Then

ln |f(z)| = 1

2π

∫
Γ

ln |f(ζ)|∂G
∂n

dl −
∑
am∈D

G(am, z) +
∑
bn∈D

G(bn, z) (11)

where am and bn are the zeros and poles of f(z) respectively.

Proof. We apply Theorem 1.2 with u(z)=ln |f(z)|. If z is neither a pole nor a zero then ∆u

is zero. Hence the integral on the right is zero. If ck is a zero(pole) of f(z) of order χk then

dk = χk(dk = −χk). Hence the right hand side of equation 8 is equal to the right hand side

of equation 11

One of the most important special case of the above case is when D is the disc {z : |z| < R}.

Theorem 2.2. Let f(z) 6≡ 0 be meromorphic on the disc {z : |z| < R}. Then the following

formula known as Poisson Jensen formula holds

ln |f(z)| = 1

2π

∫ 2π

0

ln |f(Reiθ)|Re Reıθ+z

Reiθ − z
dθ −

∑
|am|<R

ln

∣∣∣∣ R2 − amz
R(z − am)

∣∣∣∣+
∑
|bn|<R

ln

∣∣∣∣ R2 − bnz
R(z − bn)

∣∣∣∣
(12)

where am and bn are the zeros and poles of f(z) respectively.

Proof. The theorem follows from entering the explicit expression for the Green’s function in

Theorem 2.1 and using equation 6 to get ∂G
∂n

.

Theorem 2.3. Let f(z) 6≡ 0 be meromorphic on the disc {z : |z| < R} and let

f(z) = cλz
λ + cλ+1z

λ+1 + ...., cλ 6= 0 (13)

be the laurent expansion. Then the following known as the Jensen formula holds

ln |cλ| =
1

2π

∫ 2π

0

ln |f(Reiθ)|dθ −
∑

0<|am|<R

ln
R

|am|
+

∑
0<|bn|<R

ln
R

|bn|
− λ lnR (14)

where am and bn are the zeros and poles of f(z) respectively.

Proof. Let z → 0 in the Poisson Jensen formula. For the sum on the right we get

−
∑
|am|<R

+
∑
|bn|<R

= −
∑

0<|am|<R

+
∑

0<|bn|<R

+λ ln
|z|
R

= −
∑

0<|am|<R

ln
R

am
+

∑
0<|bn|<R

ln
R

bn
+ λ ln

|z|
R

+ o(1)

and on the left hand side we get

ln |f(z)| = λ ln |z|+ ln |cλ|+ o(1) (15)

Now taking z → 0 the Jensen formula follows.
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3 Shimizu Ahlfors formula

This is again a special case of Theorem 1.2.

Theorem 3.1. Let f(z) 6≡ 0 be meromorphic on the disc {z : |z| < R}. If f(0)¬∞, then

the following formula known as Shimizu Ahlfors formula holds

1

π

∫ ∫
|z|≤R

(
ln
R

|z|

)
|f ′(z)|2

(1 + |f(z)|2)2
dσ =

1

2π

∫ 2π

0

ln
√

1 + |f(Reiθ|2dθ

− ln
√

1 + |f(0)|2 +
∑
|bn|<R

ln
R

|bn|

(16)

If f(0)=∞, then the right hand is replace by

1

2π

∫ 2π

0

ln
√

1 + |f(Reiθ|2dθ − ln |cλ| − λ lnR +
∑
|bn|<R

ln
R

|bn|

here cλ is the same as in Theorem 2.3.

Proof. We use Theorem 1.2 with u(z) = ln
√

1 + |f(z)|2, D the disc with radius R. Let

A=Ref(z) and B=Imf(z). We compute ∆u(z). Using the Cauchy Riemann equation and

the fact that A and B are harmonic we find

∆u =
2|f ′(z)|2

(1 + |f(z)|2)2

Observing that in a neighborhood of a pole bk of f of order χk, ck in Theorem 1.2 is bk and

dk = −χk, we get

ln
√

1 + |f(z)|2 +
1

π

∫ ∫
|ζ|≤R

ln

∣∣∣∣ R2 − ζz
R(z − ζ)

∣∣∣∣ |f ′(z)|2

(1 + |f(z)|2)2
dσ(ζ)

=
1

2π

∫ 2π

0

R2 − |z|2

|Reiθ − z|2
ln
√

1 + |f(Reiθ)|2dθ +
∑
|bn|<R

ln

∣∣∣∣ R2 − bnz
R(z − bn)

∣∣∣∣ (17)

If f(0) 6=∞ taking z to 0 we get the formula. In case f(0)=∞ we take into account

ln
√

1 + |f(z)|2 = λ ln
|z|
R

+ ln |cλ|+ o(1)∑
|bn|<R

ln

∣∣∣∣ R2 − bnz
R(z − bn)

∣∣∣∣ = λ ln
|z|
R

+
∑

0<|bn|<R

ln
R

bn
+ o(1)

when z → 0. Taking z → 0 we get the formulae.
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4 Nevanlinna Characteristics. The first fundamental

theorem

We will define several real functions defined on [0,∞) which characterize the behavior of

a meromorphic function f(z). These functions are called the Nevanlinna characteristics of

f(z). The number of poles of f(z) in the disc {|z| ≤ R} is denoted by n(r,f). It is an

integer valued function, non decreasing and right semi continuous. Any point r, is a point of

discontinuity if f has poles on the circle of radius r. The jump value is equal to the number

of poles on the circle. Since the poles of f can’t have limit point, n(r, f) is piecewise constant

on every [a, b] ⊂ [0,∞).

Let

N(r, f) =

∫ r

0

n(t, f)− n(0, f)

t
dt+ n(0, f) ln r (18)

This characteristic describes the location of poles of f(z).The function N(r, f) is continu-

ous, non decreasing on (0,∞). Also, as a function of ln r, this is a convex function. It is

noteworthy that the characteristic takes into account only the absolute value of the poles.

The Jensen formula can be succinctly written in terms of N(r,f) in the following way

N

(
r,

1

f

)
−N(r, f) =

1

2π

∫ 2π

0

ln |f(Reiθ)|dθ − ln |cλ| (19)

This can be seen from the following equalities∑
0<|bn|<r

ln
r

|bn|
= N(r, f)− n(0, f) ln r

∑
0<|am|<r

ln
r

|am|
= N

(
r,

1

f

)
− n

(
0,

1

f

)
ln r

n(0, f)− n
(

0,
1

f

)
= −λ

Let us now define the function ln+ x which is useful in defining another characteristic.

ln+ x = max(lnx, 0)

We have the following relations for this function

lnx = ln+ x− ln+ 1

x
, | lnx| = ln+ x+ ln+ 1

x
, ln+ x = lnx∗ (20)

where x ≥ 0,x∗ = max(x, 1). We will also require the following inequalities
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ln+

∣∣∣∣∣
n∏
1

xm

∣∣∣∣∣ ≤
n∑
1

ln+ |xm| (21)

ln+

∣∣∣∣∣
n∑
1

xm

∣∣∣∣∣ ≤
n∑
1

ln+ |xm|+ lnn (22)

∣∣ln+ |x1| − ln+|x2|
∣∣ ≤ ∣∣∣∣ln ∣∣∣∣x1

x2

∣∣∣∣∣∣∣∣ (23)∣∣ln+ |x1| − ln+ |x2|
∣∣ ≤ ln+ |x1 − x2|+ ln 2 (24)

Let

m(r, f) =
1

2π

∫ 2π

0

ln+ |f(reiθ)|dθ

This function gives us information about the growth of the function f(z).When a 6=∞ the

function m

(
r, 1

f−a

)
tells us about the proximity of f(z) to a on the circle {|z| = R} and the

function n

(
r, 1

f−a

)
characterize the modulii of the roots of the equation f(z) = a. When

the function f we are dealing with is clear, we write n(f, a), m(f, a) and so on instead of

n

(
r, 1

f−a

)
, m

(
r, 1

f−a

)
. Introduce a new characteristic

T (r, f) = m(r, f) +N(r, f) (25)

Now we are in a position to prove the first fundamental theorem of Nevanlinna theory.

Theorem 4.1. Let f(z) be a non constant meromorphic function. Then if a 6=∞

m(r, a) +N(r, a) = T (r, f) + ε(r, a) (26)

where ε(r, a) = O(1) as r →∞

Proof. We use the form of Jensen formula as given in equation 19. We can do this since the

function f − a is non constant. Since the poles of f − a coincide with the poles of f we have

N

(
r,

1

f − a

)
−N(r, f) =

1

2π

∫ 2π

0

ln |f(reiθ)− a|dθ − ln |cλ(a)| (27)

where cλ(a) is the first non zero term in the Laurent expansion of f − a in the neighborhood

of 0. By the first equality in 20 we have

1

2π

∫ 2π

0

ln |f(reiθ)− a|dθ = m(r, f − a)−m
(
r,

1

f − a

)
(28)
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and we can write equation 27 as.

N(r, a) +m(r, a) = N(r, f) +m(r, f − a)− ln |cλ(a)| (29)

Now we use the inequality 24 to get

| ln+ |f − a| − ln+ |f || ≤ ln+ |a|+ ln 2

|m(r, f − a)−m(r, f)| ≤ ln+ |a|+ ln 2

Defining

ε(r, a) = m(r, f − a)−m(r, f)− ln |cλ(a)|

we get equation 26. To complete the proof observe that

|ε(r, a)| ≤ ln+ |a|+ ln 2 + | ln |cλ(a)|| = O(1) as r →∞

Intuitively the theorem states that if f(z) takes on the value a more often than it takes

the value b, then it approaches a more slowly than it approaches b. Now we show that the

T (r, f) tends to ∞ as r → ∞, so the contribution of the term ε(r, a) can be ignored. Let

a = f(0), then n(0, a) > 0 and

N(r, a) =

∫ r

0

n(t, a)− n(0, a)

t
dt+ n(0, a) ln r ≥ n(0, a) ln r →∞

since m(r, a) is non negative

T (r, f) ≥ N(r, a) +O(1)→∞ as r →∞ (30)

5 Further topics in Nevanlinna theory

Writing the theorem as first fundamental theorem surely means that we have a second funda-

mental theorem. The second theorem deals with N(r, f) defined in the same way as N(r, f)

but without taking multiplicity of poles into account and gives bound on
∑k

1 m(r, ai, f)

where ai are distinct values on the Riemann sphere. One of the application of the second

fundamental theorem is to prove the Picard’s theorem.

An interesting topic to read parallel to Nevanlinna theory is the Ahlfors theory which is the

geometric conterpart of Nevanlinna theory. Lars Ahlfors was awarded the Fields medal for

his work on this in 1936.
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