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1 Introduction

The purpose of this project is to give a brief background of basic complex analy-
sis in several complex variables by setting sights on defining and characterizing
plurisubharmonic functions and pseudoconvex domains; it will start with the
basic definitions and point out some general features before moving on to de-
scribe these objects and some of their basic properties. It will end with a few
brief pointers toward how they figure in some larger results in several complex
variables, and will provide some references for further reading.

Plurisubharmonic functions were first introduced in a foundational 1906 pa-
per of Hartogs, though he gave them no name; he used them to describe pseu-
doconvex domains, which were later proved to be equivalent to domains of
holomorphy with the work of Kiyoshi Oka; this is known as the Levi Problem,
which Oka proved for C2 in 1942, and proved it for complex dimension n ≥ 2
in 1954. We introduce the basic concepts required to understand the mechanics
of plurisubharmonic functions and the domains they characterize.

2 Basic Functional Notions

We start with the basic notions of functions of several complex variables, which
are taken as analogous to the definitions from single-variable complex analysis.

We start with two definitions of a holomorphic function of n complex vari-
ables, with n a positive integer. We use the convention that for some point
z = (z1, ..., zn) ∈ Cn, the norm

|z|Cn =

√√√√ n∑
i=1

|zi|2C.

Throughout |z| will be understood to be the complex norm for the appropriate
dimension of z.
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Definition 2.1. A function f of a point z = (z1, z2, ..., zn) ∈ Cn is holomorphic
at z0 if

f(z) =

∞∑
n=0

an(z − z0)n

in some neighborhood of z0; that is, f is holomorphic if it has a convergent
power series representation in some neighborhood of z0.

Following by analogy from the single variable case, we can define a holomor-
phic function by the existence of its naturally defined derivatives.

Definition 2.2. A function f of a point z = (z1, z2, ..., zn) ∈ Cn is holomorphic
at a point z0 if all of its partial derivatives ∂f

∂zi
exist at z0 and are finite.

It is a non-trivial result of Hartogs that these two definitions of holomorphic
are equivalent in arbitrary finite dimension n, and we assume this result. There
are a few concise proofs of this in several of the references at the end. [3]

For general order derivatives we want to use a convenient multi-index nota-
tion, defined in the following way

Definition 2.3. If f is a function of n variables, then for any a = (a1, a2, ..., an) ∈
Nn we have

∂af(z)

∂za
=

∂a1

∂z1a1
...

∂an

∂znan
f(z)

From this definition, as in the single variable case, we have that sums, dif-
ferences, and products of holomorphic functions are holomorphic, and we have
that quotients of holomorphic functions are holomorphic so long as the function
in the numerator is non-zero. The proof of these assertions follows straightfor-
wardly from the proofs of the single-variable case.

One nice property we’ve already seen in class that carries over from the
single variable case is the generalized form of Cauchy’s formula, which holds in
multiple dimensions. We state it for clarity.

Statement 1. If f is a holomorphic function on a connected subset G of Cn

then for any point z ∈ G we have

f(z) =
1

(2πi)
n

∫
∂G

f(w)

z − w
dw

where
1

w − z
=

n∏
i=1

1

wi − zi

and dw = dw1...dwn

Before jumping into functions and their domains we should familiarize our-
selves with some of the basic sets. We’d also like to define some familiar sets in
Cn, namely the polydisc and the unit ball.
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Definition 2.4. The open unit ball centered at a point a ∈ Cn of radius r is
the set

Bn(a, r) = {z : |z| < r}
Here we note that the norm is the Cn-norm; if we were to bound the set

by individually bounding the C-norm on each variable separately, we get the
polydisk.

Definition 2.5. The open polydisc centered at a point a ∈ Cn of radius r is
the set

Dn(a, r) = {z : |zi − ai| < r}
An important fundamental result due to Poincaré is that the open poly-

disc and the unit ball of dimension n ≥ 2 are not biholomorphic. This result
underscores a common theme of several complex variables: that generalizing
our definitions from single variable complex analysis does not lead to structures
with the same useful properties in several variables; moreover how we generalize
these structures furnishes the resultant object with vastly different properties.
From the perspective the single variable case, one of the most useful and pro-
found results is the Riemann mapping theorem; however from Poincaré’s result
we have that there is no higher-dimensional analogue of this. So in this sense
several complex variables are more tricky to deal with setwise. [2] [1]

However the happy compromise of several variables is that having more
complexity of the space provides more restrictions on ”well-behaved” functions.
A good example of this is the Hartogs extension theorem, a form of which was
proved in class.

There are many structures in several variables which are trivial in the single
variable case. One of these concepts is a domain of holomorphy, which we define
next.

Definition 2.6. A domain of holomorphy is an open subset U of Cn such that
there exists a function f which is holomorphic on U but for which there does
not exist an open subset U ⊂ V on which f can be analytically continued

Intuitively, a domain of holomorphy is a set for which there is a holomorphic
function that is only holomorphic on that set and cannot be analytically contin-
ued on to a larger set. In the case of a single complex variable it turns out any
domain in the complex plane is a domain of holomorphy, although the proof of
this is outside the scope of this project. The upshot of the Hartogs extension
theorem is that there exist domains in higher dimensions which are not domains
of holomorphy. We provide the following example for the two variable case, and
prove it without referring to the Hartogs extension theorem.

Theorem 1. The open set U = {z ∈ C2 : 1/2 < |z| < 1} is not a domain of
holomorphy.

Proof. We show that any holomorphic function in C2 that is holomorphic on
this domain is also holomorphic on the unit disc. First we define

φ(z) =
1

2πi

∫
|w|=3/4

f(w, z2)

w − z1
dw.
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We note that this function is holomorphic on the set

V = {(z1, z2) : |z1| <
3

4
, |z2| <

√
7

4
}

and we also have by Cauchy’s theorem and the fundamental theorem of Hartogs
that f(z) = φ(z) on the set

W = {(z1, z2) : |z1| ≤
3

4
,

1

2
< |z2| <

√
7

4
}

and since W ⊂ U we have

f(z) =
1

2πi

∫
|w|=3/4

f(w, z2)

w − z1
dw

and so we also have f is holomorphic in W and since V ∩U is a domain we have
φ is an analytic continuation of f onto the unit disk, so we have that U is not
a domain of holomorphy.

Many of the useful properties of domains of holomorphy become more ap-
parent when their relationship to less intuitively defined sets is examined. We
delve into some functional analysis in several dimensions in order to provide a
glimpse of this.

3 Toward Plurisubharmonicity

3.1 Harmonic and Subharmonic functions

We define upper-semicontinuous, harmonic, subharmonic, and plurisubharmonic
functions, though the reader probably has some familiarity with the first two
concepts already.

We recall the definition of a harmonic function and an upper-semicontinuous
function.

Definition 3.1. A twice-differentiable function f in n variables is harmonic on
the domain U if

∂2f

∂z21
+
∂2f

∂z22
+ ...+

∂2f

∂z2n
= 0

We remember that harmonicity is a real notion, and requires some tinkering
to get it to make sense in a complex setting. The most common way of doing
this is describing a function as a function of z and z.

Definition 3.2. A function f is upper-semicontinuous on a set U if for any
point x0 ∈ U we have f(x0) = limx→x0

sup f(x) where the supremum is taken
over all open sets containing x0.

Upper-semicontinuous functions are really useful when working with inequal-
ities that need to be preserved without needing the rigid structure of continuity.
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Definition 3.3. A function f(z, z) = f(x, y) is subharmonic on U if it satisfies
the following three conditions:

(1) −∞ ≤ f <∞ on U ;
(2) f is upper-semicontinuous on U ;
(3) for any arbitrary subdomain U ′ ⊂ U and any arbitrary function g which

is harmonic in U ′ and continuous in U ′, then f(z) ≤ g(z) on ∂U ′ implies f(z) ≤
g(z) on U ′.

Subharmonic functions have many useful properties; for instance linear com-
binations with positive coefficients of subharmonic functions are subharmonic.
We also have a useful monotonic convergence theorem, where the limit of any
monotonically decreasing sequence of subharmonic functions is subharmonic.
The following theorem gives an equivalent formulation of subharmonicity and
reveals some of their useful properties

3.1.1 A necessary and sufficient condition for subharmonicity

Theorem 2. Let P (z, ζ) be the Poisson kernel, with

P (z, ζ) =
1

2π

r2 − ρ2

r2 − 2rρcos(φ− θ) + ρ2

where z = reiθ and ζ = ρeiφ. Then we have the following equivalence. Let
f(z) < ∞ be a subharmonic function on the ball Bn(z0, r), and suppose f is
upper-semicontinuous on Bn(z0, r); then for all z ∈ Bn(z0, r),

f(z) ≤
∫ 2π

0

P (z − z0, reiθ)f(z0 + reiθ)dθ

Moreover, if f(z) is upper-semicontinuous and f(z) < ∞ and f satisfies the
inequality

f(z) ≤ 1

2π

∫ 2π

0

f(z + reiθ)dθ

for all z ∈ U , then we have that f is subharmonic on U .

Proof. Let f(z) <∞ be subharmonic in the ballBn(z0, r) and upper-semicontinuous
on Bn(z0, r). Then it follows from the upper-semicontinuity that there is a
decreasing sequence of continuous functions fa(z) that converges to f(z) on
Bn(z0, r). Let ga(z) be a harmonic function on Bn(0, r) that assumes the value
fa(z) on ∂Bn(0, r). so we have

ga+1(z) = fa+1(z) ≤ ga(z) = fa(z)∀z ∈ ∂Bn(0, r)

We recall the maximum principle in n dimensions, which allows us to know that

ga+1(z) ≤ ga(z)∀z ∈ Bn(z0).

We assume that a decreasing sequence of harmonic functions converges uni-
formly either to −∞ or to a harmonic function. Then we see that F (z) =
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lima→∞ fa(z) is a harmonic function or is identically −∞. By the fact that f
is subharmonic, we have

f(z) ≤ ga(z)

on the boundary and so

f(z) ≤ ga(z)∀z ∈ Bn(0, r)

this gives us
f(z) ≤ F (z).

Since each ga(z) is harmonic it is known that we have

F (z) = lim
a→∞

1

2π

∫ 2π

0

P (z − z0, reiθ)fa(z0 + reiθ)dθ

=
1

2π

∫ 2π

0

lim
a→∞

P (z − z0, reiθ)fa(z0 + reiθ)dθ

=
1

2π

∫ 2π

0

P (z − z0, reiθ)F (z0 + reiθ)dθ.

(1)

so we have the forward direction.
The reverse is a more merciful proof by contradiction. Let f(z) < ∞ be

upper-semicontinuous and satisfy the inequality

f(z) ≤ 1

2π

∫ 2π

0

P (z − z0, reiθ)f(z0 + reiθ)dθ

Moreover, let F (z) be a harmonic function on K compactly contained in the
domain U , which is continuous on ∂K and satisfies f(z) ≤ F (z) on ∂K; suppose
for contradiction that there exists a point z1 ∈ K such that F (z1) > f(z1). We
note that the function g(z) = F (z) − f(z) is upper-semicontinuous on K and
g(z) ≤ 0 on ∂K but g(z1) > 0. We know that it must obtain a maximum onK by
virtue of the upper-semicontinuity, and say it achieves this maximum M > 0 for
some point z2 ∈ K. Now since F (z) is harmonic and f(z) satisfies the assumed
inequality, we have that g(z) also satisfies the first inequality. However, this is
impossible, as this would demand that F (z) ≥ f(z) on the boundary. Thus we
have that the assumed inequality holds and f(z) is subharmonic.

We can think of this abstractly as being a looser condition than harmonic-
ity; many useful inequalities and preservation of relations follow from this fact.
Many of these properties can also be generalized to plurisubharmonic functions,
which are important in defining pseudoconvex domains, so we define them next.

Definition 3.4. A function f is plurisubharmonic on a domain U if it satisfies
the following two criteria:

(1) f is upper-semicontinuous on U .
(2) for any arbitrary z0 ∈ U and some z1 ∈ U determined by z0 we have

that f(z0 + λz1) is subharmonic with respect to λ.
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This extends subharmonicity to not only the domain in question some com-
plex lines passing through points in the domain. We note that as in the case
of subharmonicity, plurisubharmonicity is preserved under limits superior. At
first glance this seems a somewhat arbitrary set of properties; we supply the
reader with a quick test for plurisubharmonicity which generalizes from the
case of subharmonicity; this test hopefully acts to prime the reader on their
applications.

Theorem 3. A Necessary and Sufficient Condition for Plurisubharmonicity
Let P (z, ζ) be the Poisson kernel. Then we have the following equivalence: Let
f(z) < ∞ be a plurisubharmonic function on the set U , and suppose the set
U ′ = {z′ : z + λa} is compactly contained in U , then

f(z) ≤ 1

2π

∫ 2π

0

f(z + raeiθ)dθ

for all z ∈ U . Similarly the converse also holds.

Proof. We note that this follows directly from the definition of plurisubhar-
monicity and the condition for subharmonicity of f(z0 + az1)

We provide some examples of plurisubharmonic functions. For f a holo-
morphic function on U , we have that log(|f(z)|) and |f(z)|p for p ≥ 0 are all
plurisubharmonic. If u(z) is a plurisubharmonic function, then so is eu(z) and
up(z) for p ≥ 0. One of the most useful properties of plurisubharmonic functions
which we refer to in passing is that plurisubharmonic functions are mapped to
plurisubharmonic functions under biholomorphic mappings.

4 Pseudoconvex Domains

We introduce the notion of pseudoconvex domains; an important connection
exists between convexity and domains of holomorphy. We define convexity and
pseudoconvexity next.

Definition 4.1. A nonempty set U is convex if for any two points z1 and z2
we have that for all 0 ≤ λ ≤ 1 we have λz1 + (1− λ)z2 ∈ U

Definition 4.2. A nonempty set U is logarithmically convex if for any two
points z1 and z2 we have that for all 0 ≤ λ ≤ 1 we have λ log(|z1|) + (1 −
λ) log(|z2|) ∈ U

It is a non-trivial though not particularly difficult result that every logarith-
mically convex domain is pseudoconvex. In general, pseudoconvex domains are
an important tool in the study of domains of holomorphy; however they require
some upbuilding from more elementary notions in functional analysis.

Definition 4.3. Let U ⊂ Cn be a domain, and let z ∈ U . Let dU (z) be the
function which gives the distance from the point z to the boundary ∂U . We say
that the domain U is pseudoconvex if dU (z) is a plurisubharmonic function
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This definition implies an interesting consequence: for any pseudoconvex
domain, the function

g(z) = max{− log(dU (z)), |z|2}

is plurisubharmonic on U and approaches ∞ on the boundary ∂U . We prove
the following useful facts about pseudoconvex domains.

Theorem 4. An arbitrary component of the interior of the intersection of
pseudoconvex domains is a pseudoconvex domain

Proof. Let Ua denote a set of pseudoconvex domains. Then we have that
− log(dUa

(z)) are plurisubharmonic functions on Ua. Let U be any compo-
nent of

⋂
a Ua. Then the set of functions − log(dUa

(z)) are uniformly bounded
locally, since the distance to the boundary on any arbitrary Ua is necessarily
larger than the distance to the boundary for any compactly contained subset of
Ua. This implies that

− log(dU (z)) = sup
a

[− log(dUa(z))]

and more importantly, since the lim sup of plurisubharmonic functions is plurisub-
harmonic, we have U is pseudoconvex since its distance function is plurisubhar-
monic.

Theorem 5. The union of an increasing sequence of pseudoconvex domains is
pseudoconvex

Proof. Let Ua ⊂ Ua+1 and U =
⋃
a Ua. Then

− log(dUa
(z)) ≥ − log(dUa+1

(z))→ − log(dU (z))

as a → ∞ in any arbitrary subdomain V ⊂ U . Moreover the functions
log(dUa

(z)) are plurisubharmonic on V and so therefore − log(dU (z)) is also;
since V is arbitrary we have that − log(dU (z)) is plurisubharmonic on U and so
U is pseudoconvex.

From these facts we see some useful properties of pseudoconvex domains.
One of the most useful characterizations of pseudoconvex domains is by the
weak continuity principle, which we outline.

Definition 4.4. Given a set U we characterize the weak continuity principle
as follows. Let Va ⊂ U be domains such that they and their boundaries lie in
a set of two-dimensional analytic curves {Ca}, and let Va ∪ ∂Va be compactly
contained in U and let

lim
a→∞

Va = V

and let
lim
a→∞

∂Va = W

be compactly contained in U . Then we say U obeys the weak continuity principle
if it follows that if V is bounded, then V is compactly contained in U .
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Again this is a definition which is only interesting in the case of several
complex variables, as this principle holds for any domain of C. As it turns
out, the weak continuity principle is a necessary and sufficient condition for
pseudoconvexity, though we won’t prove this fact here. Furthermore this fact is
used to prove that all domains of holomorphy are pseudoconvex; this was first
proved by Hartogs, and the converse was proved later by Oka. We provide a
few references for the reader that treat of this problem. [5] [4]
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