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1 Introduction

Recall the statement of the Riemann mapping theorem:

Theorem 1 (Riemann Mapping). If R is a simply connected region in the
plane that is not all of the plane, then there exists a conformal equivalence
f : R → D where D is the open unit disk.

We refer to f as the Riemann mapping for R. We know that f exists but
there seems to be no way to construct it. Thurston conjectured that given any
region R, the Riemann mapping f could be approximated by mappings between
circle packings. In this paper, we outline how this approximation works and
give an outline of the theory behind the proof. The proof relies on the theory
of quasiconformal maps which we introduce in the next section. Necessary
background on circle packing is outlined in Section 3.

Our presentation follows parts of [4] as well as [1].

2 Quasiconformal Mappings

A conformal map f of the complex plane is an invertible holomorphic map
between open subsets U, V ⊂ C. It can be shown (see [4]) that the inverse of f
must also be holomorphic.

Conformal maps can alternatively be though of as maps which preserve
angles and shapes locally. Quasiconformal mappings generalize conformal map-
pings by allowing for some amount of deviation from the strict preservation of
angles.

In order to give a formal definition of quasiconformality we need a augmen-
tation of the Riemann mapping theorem known as Caratheodory’s theorem as
well as the notion of Jordan quadrilaterals

2.1 Caratheodory’s theorem and Jordan quadrilaterals

A Jordan curve is a continuous loop in the plane with no self-intersections.
Recall the Riemann mapping theorem which states that a simply connected

subset U of the plane is conformally equivalent to the unit disk D. Caratheodory’s
theorem extends this conformal equivalence to the closed unit disk in the special
case when U is bounded by a Jordan curve.
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Theorem 2 (Caratheodory’s theorem). If f is a conformal equivalence
D → U in C then f extends to a homeomorphism D → U if and only if δU is a
Jordan curve.

Definition 2.1. A Jordan quadrilateral (Q, q1, q2, q3, q4) is an open region Q
enclosed by a Jordan curve along with four distinct points q1, q2, q3, q4 on the
Jordan curve enclosing Q. The points qi are located in counterclockwise order
and are called the vertices of the quadrilateral.

Using the Riemann mapping theorem and Caratheodory’s theorem, one can
prove the following (see [2])

Proposition 2.1. Let (Q, q1, q2, q3, q4) be a Jordan quadrilateral. There is a
unique (up to affine transformation) rectangle R = [0, a]× [0, b] and conformal
map h : Q → R which maps vertices to vertices, meaning

h(q1) = 0 h(q2) = a h(q3) = a+ bi h(q4) = ib.

The value a/b is called the conformal modulus (or modulus) of Q and is
denoted mod(Q).

Before defining quasiconformal maps, we give an intuitive explanation. Re-
call that conformal maps are homeomorphisms which locally map very small
circles to circles. Quasiconformal maps take small circles to small “distorted”
circles. The extent to which a quasiconformal map can distort circles is bounded
by some fixed parameter; K in the below definition. Note also that our defi-
nitions use rectangles rather than circles. This is only because they make the
definition simpler.

Definition 2.2. Assume K ≥ 1 and let ϕ : U → V be an orientation-preserving
homeomorphism of open U, V ⊂ C. We say that ϕ is K-quasiconformal on U if

mod(ϕ(Q)) ≤ Kmod(Q)

for every Jordan quadrilateral Q in U .

Quasiconformal maps are of course closely related to conformal maps. If
the “distortion factor” K is 1 there is no distortion. To make this precise: a
homeomorphism is 1-quasiconformal iff it is conformal. [4]

We defined the conformal modulus of a quadrilateral above. In fact, an
analogue of the conformal modulus can be defined for annuli in place of quadri-
laterals. Without getting into the details, the conformal modulus mod(A) of an
annulus is defined as

inf{∥ρ∥L2 : f is Borel measurable and

∫
γ

ρ(z)|dz| ≥ 1}

where γ is any degree 1 curve in A. We will not use this definition. We only
need the following two facts:
Fact 1: The modulus of an annulus {z : r < |z − z0| < R} is log R

r .
Fact 2: The conformal modulus is a conformal invariant. Furthermore, if ϕ is
K-quasiconformal, then mod(ϕ(A)) ≤ Kmod(A).
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2.2 Basic results on quasiconformal maps

We need two results on quasiconformal maps. Proofs are given in [4].
Recall that we say a sequence ϕn of mappings ϕn : U → V converges locally

uniformly to ϕ if every point of U has a neighborhood on which ϕn converges
uniformly to ϕ. The following result shows that in certain cases, quasiconfor-
mality is preserved in the limit.

Theorem 3. Let K ≥ 1 and ϕn : U → Vn a sequence of K-quasiconformal
maps converging locally uniformly to a homeomorphism ϕ : U → V . Then ϕ is
also K-quasiconformal.

Another result we need is thatK-quasiconformal maps can be glued together
while preserving the constant K:

Theorem 4. Let U be a region in C and ϕ : U → V an orientation preserving
homeomorphism. Assume that C is a closed contour in C such that C divides
U into components U1, U2. If ϕ|U1

and ϕ|U2
are K-quasiconformal then so is ϕ.

2.3 Criterion for quasiconformality in the continuously
differentiable case

In the case of continuously differentiable functions, there is an easier way to
check for quasiconformality. The following criteria is useful in the proof of the
circle packing theorem. It shows that K-quasiconformality is equivalent to a
condition of the directional derivative Dvf which is defined for v ∈ S1 as

Dvϕ(z0) :=
∂

∂t
ϕ(z0 + tv)|t=0.

Theorem 5. [4] Let K ≥ 1 and ϕ : U → V an orientation-preserving diffeo-
morphism. Then TFAE
(i) ϕ is K-quasiconformal.
(ii) For z0 ∈ U , v, w ∈ S1,

|Dvϕ(z0)| ≤ K|Dwϕ(z0)|.

3 Circle Packings

Definition 3.1. Let R be a subset of the plane or the 2-sphere. A circle packing
of R is a collection of closed circles in R with disjoint interiors. The union of
the circles is assumed to be connected.

Therefore, in the plane, if we let Cj = {z ∈ C : |z−zj | = rj} with C◦
j ∩C◦

k =
∅, a circle packing is the collection (Cj)j∈J .

The nerve of a circle packing is the embedded graph whose vertex set consists
of the centers of the circles with edges joining the centers of tangent circles and
passing through the point of tangency.

The circle packing theorem states that every connected planar graph can be
realized as the nerve of a circle packing. In fact, given one additional assumption,
this circle packing is unique:

Theorem 6 (Andreev, Thurston [4]). If a planar graph is maximal (no
edges can be added while preserving planarity) then it is the nerve of a circle
packing which is unique up to reflections and Möbius transformations.
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3.1 Hexagonal circle packing

An important example of a circle packing is called regular hexagonal. First, we
need the hexagonal lattice

Γ := {2n+ 2e2πi/3m : n,m ∈ Z}.

If z0 + S1 denotes the unit circle centered at z0, the hexagonal circle packing is

H := {z0 + S1}z0∈Γ.

4 Approximation Conjecture

It was a conjecture of Thurston that one could approximate the conformal equiv-
alence of the Riemann mapping theorem using circle packings. The conjecture
was proven in [1] using quasiconformal maps. In this section we explain how this
approximation works. In Section 5, we explain in more detail how to construct
the approximation.

Let R be a simply connected region in the plane as in the statement of
the Riemann mapping theorem. Use the following scheme to approximate the
conformal equivalence ϕ guaranteed by the Riemann mapping theorem.

1. Use a regular hexagonal circle packing to fill R with circles.

2. Surround the circles with some Jordan curve.

3. By Theorem 6, this packing is a reflection/Möbius transform of a packing
of the unit disk, with the Jordan curve corresponding to the unit circle.

4. The map which takes circles from the packing of R to circles in the packing
of the unit disk is an approximation of the Riemann mapping.

Letting the radii of the circles go to 0 gives a better approximation of the
Riemann map.

5 Circle packing maps converge

In order to give a more precise description of the above approximation scheme
we need to first explain in more detail how to fill the region R with circles.

Let R be a simply connected bounded subset of C with distinguished points
z0 and z1. Let Hϵ be the regular hexagonal packing of the plane by circles
of radius ϵ. The flower of a circle in Hϵ is the region consisting of the circle,
the six circles surrounding it, as well as the space in between the circles. Let
C0 be a circle in Hϵ whose flower contains z0. Form all chains C0, C1, . . . , Ck

of consecutively tangent circles in Hϵ emanating from C0 and contained in R.
Circles that appear in some such chain are called inner circles and the set of
inner circles is denoted Iϵ.

Circles tangent to some inner circle will be called border circles. The set Bϵ

of border circles forms a cycle enclosing the inner circles called the border.
Let Cϵ = Iϵ ∪Bϵ be the circle packing consisting of border and inner circles.
Let Tϵ denote the planar graph which is the nerve of Cϵ.
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By Theorem 6, Tϵ is also the nerve of a circle packing C ′
ϵ of D, the unit disk.

There is thus a correspondence C → C ′ of circles C in Cϵ with circles C ′ in C ′
ϵ.

Recall that we have two distinguished points z0, z1 ∈ R. Assume that C1 is a
circle with flower containing z1. By applying a set of Möbius transformations
we can assume that C ′

0 is centered at the center of D and that C ′
1 is centered

on the real line.
The centers of tangent circles in Cϵ form solid closed triangles which are

equilateral since the circles came from a hexagonal packing. Let Uϵ be the
union of all these equilateral triangles. Similarly, let Dϵ be the union of the
solid closed triangles formed by centers of tangent circles in C ′

ϵ. Note that
triangles in Dϵ are not in general equilateral. There is a piecewise affine map
ϕϵ : Uϵ → Dϵ mapping triangles to triangles. It is affine on each triangle.

We want to show that the maps ϕϵ converge in some sense to the Riemann
mapping ϕ. As a preliminary step, we note that the domains converge:

Lemma 5.1. Uϵ converges to U in the Hausdorff sense as ϵ → 0. Similarly, Dϵ

converges to D in the Hausdorff sense as ϵ → 0.

We can now give a precise description of the approximation of the Riemann
map. Let U be a simply connected region with distinguished points z0, z1.
Recall once again that the Riemann mapping theorem guarantees the existence
of a unique conformal map ϕ : U → D which maps z0 7→ 0 and z1 7→ x, x a
positive real.

Theorem 7. Let ϕϵ be the piecewise affine map defined above. As ϵ → 0, ϕϵ

converges locally uniformly to ϕ.

Before outlining the proof we need one more result:

Proposition 5.1. [4] Let ϕn : U → Vn be a sequence of K-quasiconformal
maps for some K ≥ 1, such that all the Vn are uniformly bounded. Then the
ϕn are a normal family, that is, every sequence in ϕn contains a subsequence
that converges locally uniformly.

Proof. First we show that the ϕn restricted to compact subsets of U are
equicontinuous: Let C be a compact subset of U and z, w ∈ C. The points
z, w can be surrounded with an annulus A = {z : r < |z − z0| < R}. The
modulus of this annulus is given by log R

r (see Fact 1 in section 2.1). Therefore,
letting |z − w| → 0, the annulus surrounding z, w can have arbitrarily large
modulus. Since modulus is preserved under conformal mapping, ϕn(A) has the
same modulus. Furthermore, ϕn(A) surrounds ϕn(z) and ϕn(w). However, since
ϕn(z), ϕn(w) ∈ ϕn(C), a bounded region, the distance |ϕn(z) − ϕz(w)| can be
forced to be arbitrarily small. Thus ϕn are equicontinuous on C. Equicontinuity
on compact subsets gives locally uniform convergence of some subsequence.

Below we give only an outline the proof of Theorem 7. For a more complete
proof see [4].

Proof outline for Theorem 7: Using a result called the Hexagonal Packing
Lemma (see [4]) the maps ϕϵ map equilateral triangles to triangles in Dϵ which
are arbitrarily close to equilateral. To be more precise, this means that the
angles of the triangles of Dϵ are π

3 + f(ϵ) where f(ϵ) → 0 as ϵ → 0. Using this
fact along with Theorem 5 one can then show that ϕϵ is 1+f(ϵ)-quasiconformal
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on each triangle of R. By our result on gluing quasiconformal maps (Theorem
4), this means it is actually 1 + f(ϵ)-quasiconformal on all of R.

Using Proposition 5.1, one can show that ϕϵ converges locally uniformally
to a limit function.

By Theorem 3 the limit function is conformal. The Riemann mapping the-
orem guarantees that there is a unique such function. Since we showed conver-
gence on fixed compact subsets R of U we get that ϕϵ converges locally uniformly
to ϕ.
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