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MAT 205B Riemann-Roch Theorem

Introduction

Roughly speaking, the Riemann-Roch theorem gives us the number of linearly independent

meromorphic functions on a compact connected Riemann surface under certain restrictions

on the poles. It tells us that this number only depends on the genus of the surface, a easily

computable number that depends on restrictions placed on the configuration of the poles

and a correction term called the dimension of the 1st cohomology of the surface. The proof

presented here uses the algebraic machinery of sheaves and cohomology of sheaves. We

explain these notions succinctly in sections 1,2,3 and prove the main theorem in section 4.

Finally, in section 5 we give an application. Most of the proofs presented here are taken

from Forster, Otto. Lectures on Riemann Surfaces. Springer, 1981.

1 Sheaf of Abelian Groups

Definition 1.1 (presheaf). Suppose X is a topological space and T is the collection of open

sets in X. A presheaf of abelian groups on X is a pair (F , ρ) consisting of

(i) a family F = (F (U))U∈T of abelian groups

(ii) a family ρ = (ρUV )U,V ∈T of group homomorphisms with the following properties

(a) ρUV : F (U)→ F (V ) where V is open in U

(b) ρUU = idF (U) for every U ∈ T

(c) ρVW ◦ ρUV = ρUW for W ⊂ V ⊂ U

Generally one writes F instead of (F , ρ). The homomorphisms ρUV are called restriction

homomorphisms. In our applications, these homomorphisms will be actual restrictions. So,

from now on instead of writing ρUV (f) for f ∈ F (U), we will write f |V

Definition 1.2 (sheaf). A presheaf F on a topological space X is called a sheaf if for every

open set U ∈ X and every family of open subsets Ui ⊂ U, i ∈ I that cover U (U = ∪i∈IUi),
the following axioms are satisfied:

(i) If f, g ∈ F (U) such that f |Ui = g|Ui for all i ∈ I, then f = g.

(ii) Given fi ∈ F (Ui) such that fi|Ui ∩ Uj = fj|Ui ∩ Uj for all i, j ∈ I, there exists an

f ∈ F (U) such that fi = f |Ui for all i ∈ I

Example 1.3.

(a) Let X be any topological space. For an open set U ⊂ X define C (U) to be the set of

continuous functions f : U → C. C (U) is an abelian group under pointwise addition.

For an open set V ⊂ U define ρUV : C (U)→ C (V ) by the usual restriction ρUV (f) = f |V .

Then, clearly (C , ρ) is a presheaf. Moreover, it also satisfies the two sheaf axioms. If
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Ui ⊂ U , U = ∪i∈IUi and f |Ui = g|Ui for all i then f = g as f |Ui, g|Ui are the usual

restrictions. Next, if fi ∈ C (Ui) and fi|Ui ∩ Uj = fj|Ui ∩ Uj then define f : U → C by

f(x) = fi(x) if x ∈ Ui. This map is well defined. Moreover for any x ∈ U , if x ∈ Ui
then f |Ui = fi is continuous. This means f is continuous at x. Therefore, f ∈ C (U)

and the second axiom is also satisfied. Therefore, C is a sheaf.

(b) Suppose X is a Riemann surface. For any open set U ∈ X, define O(U) to be the

group of holomorphic functions f : U → C under addition. For open set V ⊂ U , again

define ρUV (f) = f |V to be the usual restriction. Then, for reasons similar to above, O
is a sheaf

Definition 1.4. Suppose F is a presheaf on a topological space X. Then, for a ∈ X, we

define the equivalence relation ∼
a

on
∐
U3a

F (U) as follows. If f ∈ F (U), g ∈ F (V ) then

f ∼
a
g if there exists an open set W such that a ∈ W ⊂ V ∩ U and f |W = g|W

Definition 1.5 (stalk at a point and germs). Let F be a presheaf on a topological space

X. Then, for a ∈ X, the stalk of F at a is given by

Fa =
∐
U3a

F (U)

/
∼
a

Let ρa :
∐
U3a

F (U) →
∐
U3a

F (U)
/
∼
a

be the quotient map. Then, for f ∈ F (U), ρa(f) is

called the germ of f at a. One can define addition on the stalk at a point in the following

way. If f ∈ F (U) and g ∈ F (U ′) then define ρa(f) + ρa(g) = ρa(f |U ∩U ′+ g|U ∩U ′). This

makes Fa an abelian group.

2 Cohomology groups

Definition 2.1 (cochain group). Suppose X is topological space and F is a sheaf of abelian

groups on X. Let U = {Ui}i∈I be an open cover for X. Then for q = 0, 1, 2, . . ., we define

the qth cochain group of F with respect to U as

Cq(U,F ) =
∏

(i0,...,iq)∈Iq+1

F (Ui0 ∩ · · · ∩ Uiq)

Definition 2.2 (coboundary map). Let U,F , X be as above. We then define the boundary

operators

δ : C0(U,F )→ C1(U,F )

δ : C1(U,F )→ C2(U,F )

as follows:
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(i) For (fi)i∈I ∈ C0(U,F ), let δ((fi)i∈I) = (gij)i,j∈I where

gij = fj|Ui ∩ Uj − fi|Ui ∩ Uj ∈ F (Ui ∩ Uj)

For simplicity of notation, we will write gij = fj − fi from now on

(ii) For (fij)i,j∈I ∈ C1(U,F ), let δ((fij)i,j∈I) = (gijk)i,j,k∈I where

gijk = fjk|Ui ∩ Uj ∩ Uk − fik|Ui ∩ Uj ∩ Uk + fij|Ui ∩ Uj ∩ Uk

Again, for simplicity, we will write gijk = fjk − fik + fij

These coboundary operators are homomorphisms since the restriction homomorphisms are

homomorphisms.

Definition 2.3 (Cohomology w.r.t. a covering). Let

Z1(U,F ) := Ker(C1(U,F )
δ−→ C2(U,F ))

B1(U,F ) := Im(C0(U,F )
δ−→ C1(U,F ))

The elements of Z1(U,F ) are called 1-cocycles and the elements of B1(U,F ) are called

1-coboundaries. Coboundaries are also called splitting cocycles. One can easily check that

every 1-coboundary is a 1-cocyle. The quotient map

H1(U,F ) := Z1(U,F )/B1(U,F )

is called the 1st Cohomology group with coefficient in F with respect to the covering U. Its

elements are called Cohomology classes and two cocyles which belong to the same cohomol-

ogy class are called cohomologous. Thus two cocycles are cohomologous precisely if their

difference is a coboundary. The cohomology group defined above depends on the covering.

In order to have cohomology groups which depend only on X and F , one has to use finer

and finer converings and then take a “limit”. We will make this idea precise now.

Lemma 2.4. If (fij) is a cocycle then fii = 0 and fij = −fji

Proof. Since (fij) is a cocycle, we have

fik = fij + fjk on Ui ∩ Uj ∩ Uk

Setting i = j = k, we get fii = 0. Then, setting i = k gives us fij = −fji

Definition 2.5. An open covering B = (Vk)k∈K is called finer than the covering U = (Ui)i∈I
(denoted B < U) if there exists a map τ : K → I such that Vk ⊂ Uτk for every k ∈ K. This

just means that every Vk is contained in some Ui. Now, define the homomorphism

tUB : Z1(U,F )→ Z1(B,F )
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in the following way. For (fij) ∈ Z1(U,F ) let tUB((fij)) = (gkl) where

gkl := fτk,τ l|Vk ∩ Vl

It can be easily checked that this map takes coboundaries to coboundaries. Thus it induces

a homomorphism of the cohomology groups H1(U,F ) → H1(B,F ), which we also denote

by tUB

Lemma 2.6. The mapping tUB is independent of the choice of τ : K → I

Proof. Suppose τ̃ : K → I is another mapping such that Vk ⊂ Uτ̃k for every k ∈ K. Suppose

(fij) ∈ Z1(U,F ) and let

gkl := fτk,τ l|Vk ∩ Vl and g̃kl := fτ̃k,τ̃ l|Vk ∩ Vl

We need to show that the cocycles (gkl) and (g̃kl) are cohomologous. Since Vk ⊂ Uτk ∩ Uτ̃k,
one can define

hk := fτk,τ̃k|Vk ∈ F (Vk)

Then, on Vk ∩ Vl we have

gkl − g̃kl = fτk,τ l − fτ̃k,τ̃ l
= fτk,τ l + fτl,τ̃k − fτl,τ̃k − fτ̃k,τ̃ l
= fτk,τ̃k − fτl,τ̃ l
= hk − hl

Thus, (gkl)− (g̃kl) is a coboundary.

Lemma 2.7. The mapping

tUB : H1(U,F )→ H1(B,F )

is injective

Proof. Suppose (fij) ∈ Z1(U,F ) is a cocycle whose image is a coboundary. We need to show

that (fij) itself is a coboundary. Say fτk,τ l = gk − gl on Vk ∩ Vl where gk ∈ F (Vk). Then on

Ui ∩ Vk ∩ Vl one has

gk − gl = fτk,τ l = fτk,i + fi,τ l = fi,τ l − fi,τk
and thus fi,τk + gk = fi,τ l + gl. Applying definition 1.2(ii) we get hi ∈ F (Ui) such that

hi = fi,τk + gk on Ui ∩ Vk

Therefore, we have

fij = fi,τk + fτk,j = fi,τk + gk − fj,τk − gk = hi − hj

Since k is arbitrary, it follows from definition 1.2(i) that this equation is valid over Ui ∩ Uj.
Therefore, (fij) is a coboundary.
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Remark. If one has open coverings W < B < U then from 2.6 it follows that

tBW ◦ tUB = tUW

Definition 2.8. Define an equivalence relation ∼ on the disjoint union of the H1(U,F ),

where U runs through all open coverings of X in the following way. Two cohomology classes

ξ ∈ H1(U,F ) and η ∈ H1(U′,F ) are equivalent if there exists an open covering B with

B < U and B < U′ such that tUB(ξ) = tU
′

B(η). The set of equivalence classes

H1(X,F ) :=

(∐
U

H1(U,F )

)/
∼

is called the 1st Cohomology group of X with coefficients in F . Addition in H1(X,F )

is defined in the following way. For x, y ∈ H1(X,F ) represented by ξ ∈ H1(U,F ) and

η ∈ H1(U′,F ), let B be a common refinement of U and U′. Then x + y is defined to be

the equivalence class of tUB(ξ) + tU
′

B(η) ∈ H1(B,F ). One can check that this defnition is

independent of the various choices made and makes H1(X,F ) into an abelian group.

Remark. We’ve dealt with sheaves of abelian groups till now. However, one can see that

all that we’ve been doing can be extended to sheaves of vector spaces as well. In this case

H1(X,F ) will be a vector space instead.

Definition 2.9 (Zeroth Cohomology Group). Suppose F is a sheaf of abelian groups on

the topological space X and U = (Ui)i∈I is an open covering of X. Let

Z0(U,F ) := Ker(C0(U,F )
δ−→ C1(U,F )),

B0(U,F ) := {0},
H0(U,F ) := Z0(U,F )/B0(U,F ) = Z0(U,F )

(fi) ∈ Z0(U,F ) precisely if fi|Ui ∩ Uj = fj|Ui ∩ Uj for every i, j ∈ I. By the sheaf axiom

1.2(ii) we can the conclude that there is a f ∈ F (X) s.t. f |Ui = fi for every i ∈ I. Therefore

there is a natural isomorphism

H0(U,F ) = Z0(U,F ) ∼= F (X)

Thus, the groups H0(U,F ) are independent of U and one can define

H0(X,F ) := F (X)

3 The exact Cohomology Sequence

Definition 3.1. Suppose F and G are sheaves of abelian groups on the topological space

X. A sheaf homomorphism α : F → G is a family of group homomorphisms

αU : F (U)→ G (U), U open in X
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such that for every pair of open sets U, V ⊂ X with V ⊂ U , the following diagram commutes.

F (U) G (U)

F (V ) G (V )

αU

restr. restr.

αV

restr. denotes the restriction homomorphisms. If all the αU are isomorphisms then α is called

and isomorphism. One often writes α : F (U)→ G (U) instead of αU : F (U)→ G (U). Also,

note that analogous definitions exist for sheaves of vector spaces.

Lemma 3.2. Suppose α : F → G is a sheaf homomorphism on X. For f ∈ F (U) and

g ∈ G (V ) let ρx(f) and ηx(g) be the corresponding germs at x. Then, the map αx : Fx → Gx
given by

αx(ρx(f)) := ηx(αU(f))

is a homomorphism.

Proof. To check that the map is well defined, let f ′ ∈ F (U ′) such that ρx(f
′) = ρx(f). We

need to check that ηx(αU(f)) = ηx(αU ′(f
′)). i.e. we need to show that there is an open set

W ⊂ U ∩ U ′ such that αU(f)|W = αU ′(f
′)|W . Since ρx(f) = ρx(f

′), we get a W ⊂ U ∩ U ′
such that f |W = f ′|W . Then, αU(f)|W = αW (f |W ) = αW (f ′|W ) = αU ′(f

′)|W .

Next, note that for f ′ ∈ F (U ′), αx(ρx(f) + ρx(f
′)) = αx(ρx(f |U ∩ U ′) + ρx(f

′|U ∩ U ′) =

ηx(αU∩U ′(f |U ∩U ′+f ′|U ∩U ′)) = ηx(αU∩U ′(f |U ∩U ′))+ηx(αU∩U ′(f
′|U ∩U ′)) = αx(ρx(f))+

αx(ρx(f
′)). And, αx(−ρx(f)) = αx(ρx(−f)) = ηx(αU(−f)) = −ηx(αU(f))

Definition 3.3. A sequence of sheaf homomorphism F
α−→ G

β−→ H is called exact if for

each x ∈ X the sequence

Fx
αx−→ Gx

βx−→Hx

is exact. α : F → G is called a monomorphism if 0→ F
α−→ G is exact and an epimorphism

if F
α−→ G → 0 is exact.

Lemma 3.4. Suppose α : F → G is a sheaf monomorphism on the topological space X.

Then for every subset U ⊂ X the mapping αU : F (U)→ G (U) is injective.

Proof. Suppose f ∈ F (U) and αU(f) = 0. Then, for every x ∈ U , αx(ρx(f)) = 0. Therefore,

by injectivity of αx, we have ρx(f) = 0 for every x ∈ U . This means that for every x ∈ U ,

there exists a neighborhood Vx ⊂ U such that f |Vx = 0. But then by sheaf axiom 1.2(i) it

follows that f = 0

Lemma 3.5. Suppose 0 → F
α−→ G

β−→ H is an exact sequence of sheaves on X. Then for

every open set U ⊂ X the sequence

0→ F (U)
α−→ G (U)

β−→H (U)

is exact
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Proof.

(a) The exactness of 0→ F (U)
α−→ G (U) was shown in 3.4

(b) To show Im(α) ⊂ Ker(β) suppose f ∈ F (U) and g = α(f). Since Fx → Gx →Hx is

exact, we can conclude that the germ of g at x is in the kernel of βx for every x ∈ U .

This just means that for every x ∈ X, there exists an open set Vx ⊂ U such that

β(g)|Vx = 0. Then, by the sheaf axiom 1.2(i), β(g) = 0

(c) To prove inclusion Ker β ⊂ Im α suppose g ∈ G (U) with β(g) = 0. Since for every

x ∈ U one has Ker βx = Im αx, there is an open covering (Vi)i∈I of U and elements

fi ∈ F (Vi) such that α(fi) = g|Vi for every i ∈ I. On the the intersection Vi ∩ Vj one

has α(fi−fj) = g|Vi∩Vj−g|Vi∩Vj = 0. Hence by lemma 3.4 it follows that fi = fj on

Vi ∩ Vj. Then, by sheaf axiom 1.2(ii) there exists f ∈ F (U) with f |Vi = fi for every

i ∈ I. Since α(f)|Vi = α(f |Vi) = g|Vi, it follows from the sheaf axiom 1.2(i) applied to

G that α(f) = g.

Definition 3.6. Any homomorphism α : F → G of sheaves on the topological space X

induces homomorphisms

α0 : H0(X,F )→ H0(X,G ),

α1 : H1(X,F )→ H1(X,G )

The homomorphism α0 is nothing but αX : F (X)→ G (X). The homomorphism α1 can be

constructed as follows. Let U = (Ui)i∈I be an open covering of X. Consider the mapping

αU : C1(U,F )→ C1(U,G )

which assigns to each co chain ξ = (fij) ∈ C1(U,F ) the cochain

αU(ξ) := (α(fij)) ∈ C1(U,G )

One can check that this mapping takes cocycles to cocycles and coboundaries to coboundaries

and thus induces a homomorphism α̃U : H1(U,F )→ H1(U,G ). The collection of α̃U, where

U runs over all open coverings of X, then induces the homomorphism α1.

Definition 3.7 (The Connecting Homomorphism). Suppose 0→ F
α−→ G

β−→ H → 0 is an

exact sequence of sheaves on the topological space X. The connecting homomorphism

δ∗ : H0(X,H )→ H1(X,F )

is defined as follows. Suppose h ∈ H0(X,H ) = H (X). Since all homomorphisms βx :

Gx → Hx are surjective, there exists an open covering U = (Ui)i∈I of X and a cochain

(gi) ∈ C0(U,G ) such that

β(gi) = h|Ui for every i ∈ I
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Hence, β(gj − gi) = 0 on Ui ∩ Uj. By lemma 3.5 there exits fij ∈ F (Ui ∩ Uj) such that

α(fij) = gj − gi

On Ui ∩ Uj ∩ Uk one has α(fij + fjk − fik) = 0. Thus by lemma 3.4 fij + fjk − fik = 0, i.e.,

(fij) ∈ Z1(U,F )

Let δ∗(h) be the cohomology class represented by (fij). One can check that this definition

is independent of the various choices made.

Theorem 3.8. Suppose X is a topological space and 0 → F
α−→ G

β−→ H → 0 is a short

exact sequence of sheaves on X. Then the induced sequence of cohomology groups

0→ H0(X,F )
α0

−→ H0(X,G )
β0

−→ H0(X,H )
δ∗−→

δ∗−→ H1(X,F )
α1

−→ H1(X,G )
β1

−→ H1(X,H )

is exact.

Proof.

(a) The exactness at H0(X,F ) and H0(X,G ) follows from lemma 3.5.

(b) To show Im β0 ⊂ Ker δ∗, let g ∈ H0(X,G ) and h = β0(g). In the construction of

δ∗h described in definition 3.7 one can choose gi = g|Ui. But then fij = 0 and thus

δ∗h = 0.

(c) To show Ker δ∗ ⊂ Im β0, suppose h ∈ Ker δ∗. Using notation of definition 3.7 one

can represent δ∗h by the cocycle (fij) ∈ Z1(U,F ). Since δ∗h = 0 there exists a cochain

(fi) ∈ C0(U,F ) such that fij = fj − fi on Ui ∩ Uj. Set g̃i = gi − α(fi). Then g̃i = g̃j
on Ui ∩ Uj since α(fij) = gj − gi. Thus g̃i are restrictions of some global element

g ∈ H0(X,G ). On Ui one then has β(g) = β(g̃i) = β(gi − α(fi)) = β(gi) = h, i.e.

h ∈ Im β0.

(d) Im δ∗ ⊂ Ker α1 follows from the fact that in definition 3.7, α(fij) = gj − gi.

(e) To show Ker α1 ⊂ Im δ∗ suppose ξ ∈ Ker α1 is represented by the cocycle (fij) ∈
Z1(U,F ). Since α1(ξ) = 0, there exists a cochain (gi) ∈ C0(U,G ) such that α(fij) =

gj − gi on Ui ∩ Uj. This implies

0 = β(α(fij)) = β(gj)− β(gi) on Ui ∩ Uj

Therefore, there exists h ∈H (X) = H0(X,H ) such that h|Ui = β(gi). The construc-

tion given in definition 3.7 shows that δ∗h = ξ.
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(f) Im α1 ⊂ Kerβ1 follows from the fact that

F (Ui ∩ Uj)
α−→ G (Ui ∩ Uj)

β−→H (Ui ∩ Uj)

is exact by lemma 3.5.

(g) To show Ker β1 ⊂ Im α1 suppose η ∈ Ker β1 is represented by the cocycle (gij) ∈
Z1(U,G ), where U = (Ui)i∈I . Then there is a cochain (hi) ∈ C0(U,H ) such that

β(gij) = hj − hi. For every x ∈ X choose τx ∈ I such that x ∈ Uτx. Since βx :

Gx → Hx is surjective, there is an open neighborhood Vx ⊂ Uτx of x and an element

gx ∈ G (Vx) such that β(gx) = hτx|Vx. Let B = (Vx)x∈X and g̃xy = gτx,τy|Vx ∩ Vy.
Then (g̃xy) ∈ Z1(B,G ) is a cocycle which also represents the cohomology class η. Let

ψxy := g̃xy−gy +gx. The cocycle (ψxy) is cohomologous to (g̃xy) and β(ψxy) = 0. Thus

there exists fxy ∈ F (Vx ∩ Vy) such that α(fxy) = ψxy. Since

α : F (Vx ∩ Vy ∩ Vz)→ G (Vx ∩ Vy ∩ Vz)

is injective by lemma 3.4, (fxy) ∈ Z1(B,F ). Therefore the cohomology class ξ ∈
H1(X,F ) of (fxy) satisfies α1(ξ) = η. This completes the proof.

4 The Riemann-Roch Theorem

Definition 4.1. For a Riemann Surface X and an open set U ⊂ X define O(U) = {f :

U → C : f is holomorphic} and M (U) = {f : U → P1 : f is holomorphic}, where P1 is the

riemann sphere. Then with the restriction homomorphism being the usual restriction, M ,O
are sheafs on X. M is called the sheaf of meromorphic functions and O is called the sheaf

of holomorphic functions on X.

Definition 4.2 (Divisors). Let X be a Riemann surface. A divisor on X is a mapping

D : X → Z

such that for any compact subset K ⊂ X there are only finitely many points x ∈ K such

that D(x) 6= 0. With respect to addition the set of all divisors on X is an abelian group

which we denote Div(X). For D,D′ ∈ Div(X) we say D ≤ D′ if D(x) ≤ D′(x) for every

x ∈ X

Definition 4.3 (Divisors of Meromorphic Functions). Suppose X is a Riemann surface and

U is an open subset of X. For meromorphic function f ∈M (U) and a ∈ U define

orda(f) :=


0, if f is holomorphic and non-zero at a,

k, if f has a zero of order k at a,

−k, if f has a pole of order k at a,

∞, if f is identically zero in a neighborhood of a.

10



MAT 205B Riemann-Roch Theorem

Thus for any meromorphic function M (X) \ {0}, the mapping x 7→ ordx(f) is a divisor on

X. It is called the divisor of f and denoted (f).

Definition 4.4 (The Degree of a Divisor). Suppose now that X is a compact Riemann

surface. Then for every D ∈ Div(X) there are only finitely many x ∈ X such that D(x) 6= 0.

Hence one can define

Deg D :=
∑
x∈X

D(x)

This mapping Deg is a group homomorphism

Definition 4.5. Suppose D is a divisor on a riemann surface X. For any open set U ⊂ X

define

OD(U) := {f ∈M (U) : ordx(f) ≥ −D(x) for every x ∈ X}

Together with the usual restriction mappings, OD is a sheaf. In the special case of D = 0,

we get O0 = O.

Lemma 4.6. If X is a connected compact Riemann surface and f ∈ O(X) then f is a

constant map.

Proof. We will show that if f is non-constant then it must be open. Then, since X is com-

pact, we can conclude that f(X) ⊂ C is both open and compact. No non-empty subset of

C is both open and compact. So we reach a contradiction.

To show a non-constant f ∈ O(X) is open, let {φi : Ui → Vi ⊂ C}i∈I be a an atlas on X.

It is enough to show that f |Ui
is open. If f |Ui

is non-constant, then since φ−1i is a bijection

and f |Ui
is holomorphic, f |Ui

◦ φ−1i is a non-constant holomorphic function from Vi ∈ C to

C and hence is open. Since φ−1i is a homeomorphism, this implies f |Ui
is open.

So, assume that f |Ui
is constant for some i. We will show that in this case f is a con-

stant map. Define

S = {x ∈ X : there exists open set U ⊂ X, x ∈ U such that f |U = 0}

From the definition it is easy to see that S is open. To show it is closed, let (xn) be a

sequence in S that converges to some x ∈ X. If we take a chart φ : U → V ⊂ C around x

then we can assume xn ∈ U as eventually all x′ns will be in U . The map f |U ◦ φ−1 is zero at

φ(xn). i.e. we get a holomorphic map from V to C which has zeros that accumulate. This

implies f |U ◦ φ−1 is identically zero =⇒ f |U is identically zero. Which in turn implies that

x ∈ S. This proves S is both open and closed. If f |Ui
= 0 then S is non empty and thus

S = X,i.e., f = 0.

To complete the proof note that if f |Ui
= c then (f − c)|Ui

= 0 and hence (f − c) = 0, i.e.,

f = c.

11
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Definition 4.7 (Genus of a Riemann Surface). Suppose X is a compact Riemann surface.

Then

g := dim H1(X,O)

is called the genus of X.

Definition 4.8 (The Skyscraper Sheaf Cp). Suppose p is a point on a Riemann surface X.

Define a sheaf Cp on X by

Cp(U) :=

{
C if p ∈ U ,

0 if p /∈ U

Define the restriction maps in the following way. If Cp(U) = 0 then define ρUV to be the zero

map. If Cp(V ) = 0 then again define ρUV to be the zero map. If both Cp(U) and Cp(V ) are

C then define ρUV to be the identity.

Lemma 4.9.

(i) H0(X,Cp) ∼= C

(ii) H1(X,Cp) = 0

Proof. H0(X,Cp) ∼= Cp(X) = C. Therefore (i) is trivially true. To show (ii), consider a

cohomology class ξ ∈ H1(X,Cp) which is represented by a cocycle in Z1(U,Cp). By taking

intersection with X \ {p} one can obtain a refinement B = (Vα)α∈A such that the point p

is in only one Vα. Then, for (fij) ∈ C1(B,Cp), if i 6= j then fij = 0 since p /∈ Vi ∩ Vj. if

(fij) ∈ Z1(B,Cp) then fii = 0. Therefore, we conclude that (fij) = 0 and Z1(B,Cp) = 0

(hence H1(B,Cp) = 0). Since tUB is injective, we conclude that H1(U,Cp) = 0. Since this is

true for all open covers U, H1(X,Cp) = 0

Lemma 4.10. For p ∈ X, let P be the divisor that takes the value 1 at p and zero elsewhere.

Then, we have the following exact sequence

0→ H0(X,OD)→ H0(X,OD+P )→ C
→ H1(X,OD)→ H1(X,OD+P )→ 0

Proof. It is easy to see that the natural inclusion i : OD → OD+P is an injection on the level

of stalks. So 0 → OD → OD+P is exact. Let z : V → U ⊂ C be a local coordinate on X

around p such that z(p) = 0. Define a sheaf homomorphism

β : OD+P → Cp

as follows. If p /∈ U , then Cp(U) = 0. So set βU = 0. In this case since D = D + P on U ,

OD(U) = OD+P (U). If p ∈ U then f ∈ OD+P (U) admits a laurent series around p in the

coordinate z,

f =
∞∑

n=−k−1

cnz
n

12
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where k = D(p). Set

βU(f) := c−k−1 ∈ C = Cp

On the level of stalks, we can check that βx = 0, (Cp)x = 0 if x 6= p. if x = p, we have

βp(ρp(f)) = c−k−1 and (Cp)p = C. we can find a small coordinate neighborhood V around

p where we can define f ∈ OP+D via a power series such that c−k−1 6= 0. For this f ,

βp(ρp(f)) 6= 0 and thus βp is surjective. Therefore, OD+P
β−→ Cp → 0 is exact.

Finally, for f ∈ OD+P (U), where p ∈ U , βU(f) = 0 if and only if f ∈ Im(i). Therefore,

Ker(βU) = Im(i). One can check that such a relation hold at the level of stalks as well.

Thus, OD
i−→ OD+P

β−→ Cp is exact

Therefore, we conclude that

0→ OD
i−→ OD+P

β−→ Cp → 0

is exact. Therefore, applying Theorem 3.8 and lemma 4.10, we get the following exact

sequence

0→ H0(X,OD)→ H0(X,OD+P )→ C
→ H1(X,OD)→ H1(X,OD+P )→ 0

Remark. All our analysis till now can be applied to sheaves of vector spaces as well. In

particular, when applied to the case of vector spaces, the exact sequence obtained above is

an exact sequence of vector spaces.

Theorem 4.11 (The Riemann-Roch Theorem). Suppose D is a divisor on a compact

connected Riemann Surface X of genus g. Then H0(X,OD) and H1(X,OD) are finite

dimensional vector spaces and

dim H0(X,OD)− dim H1(X,OD) = 1− g + deg D (1)

Proof.

(a) If D = 0 then H0(X,O0) = O consists of only constant functions by lemma 4.6 and

thus dim H0(X,O0) = 1. dim H1(X,O0) = g by definition. Deg D = 0. Therefore

the above equation holds.

(b) Denote by P the divisor that takes value 1 at p and 0 elsewhere. Let D′ = D + P .

Also suppose that the result holds for one of the divisors D,D′. Define

V := Im(H0(X,OD′)→ C)

W := C/V

13
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Then, dim V + dim W = dim C = 1 = deg D′ − deg D. Applying the analogue of

lemma 4.10 for vector spaces, we see that

0→ H0(X,OD)→ H0(X,OD+P )→ C
→ H1(X,OD)→ H1(X,OD+P )→ 0

is exact. Therefore, we have the following exact sequences.

0→ H0(X,OD)→ H0(X,OD′)→ V → 0

0→ W → H1(X,OD)→ H1(X,OD′)→ 0

From the exactness of these we get

H0(X,OD′) ∼= H0(X,OD)⊕ V
H1(X,OD) ∼= H1(X,OD′)⊕W

Therefore if one of H0(X,OD′), H0(X,OD) is finite dimensional, so is the other one.

Similarly if one of H1(X,OD), H1(X,OD′) is finite dimensional, so is the other one.

One can then write

dim H0(X,OD′) = dim H0(X,OD) + dim V

dim H1(X,OD) = dim H1(X,OD′) + dim W

Adding the two equations above and using dim V + dim W = deg D′ − deg D, one

gets

dim H0(X,OD′)−dim H1(X,OD′)−deg D′ = dim H0(X,OD)−dim H1(X,OD)−deg D

Therefore, if equation (1) holds for one of D,D′, then it hold for the other as well.

(c) An arbitrary divisor D can be written as

D = P1 + P2 + · · ·+ Pm − Pm+1 − Pm+2 − · · · − Pn

We proved the result for the base case D = 0 in (a). Thus, we can induct using (b) to

prove the general case.

5 An application

Theorem 5.1. Suppose X is a compact connected Riemann surface of genus g and a is a

point of X. Then there is a non-constant meromorphic function f on X which has a pole of

order ≤ g + 1 at a and is otherwise holomorphic.

14
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Proof. Let D be the divisor that takes value D(a) = g + 1 and D(x) = 0 if x 6= a. Then,

applying the Riemann-Roch theorem to this divisor, we get

dim OD(X) = dim H0(X,OD) ≥ 1− g + deg D = 2

The constant functions in OD form a one dimensional subspace. Therefore, there exists a

non-constant function in OD(X). This is the required function.

We will use the above to show that every compact connected riemann surface of genus 0 is

biholomorphic to the Riemann sphere P1. Before proving this, we need two additional facts

which we will not prove.

Fact 1: Suppose X and Y are Riemann surfaces and f : X → Y is a non-constant holo-

morphic map such that the pre-image of every compact set is compact. Then there exists a

natural number n such that f takes every value c ∈ Y , counting multiplicities, n times.

Fact 2: If X, Y are Riemann surfaces and f : X → Y is holomorphic and bijective. Then,

f is a biholomorphism.

Corollary 5.1.1. Every Riemann-surface of genus 0 is biholomorphic to P1

Proof. Theorem 5.1 gives us a non-constant holomorphic map f : X → P1 that assumes the

value ∞ with multiplicity ≤ g + 1 = 1. The multiplicity cannot be 0 since then we would

have a holomorphic map on a compact connected Riemann surface, which by lemma 4.6

must be a constant. Next, observe that since X is compact, the pre-image of any compact

set in P1 is compact. Therefore, by Fact 1, f assumes each value in P1 once. Therefore, f is

bijective and by Fact 2, is a biholomophism.
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