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The Schwarz-Christoffel Transformation

0.1 Introduction

We consider a simple polygon and ask whether there is a conformal map from H to the
polygon denoted by P. The answer is yes and such conformal map is written in terms of
a ‘Schwarz-Christoffel” integral. At the end, we will include Matlab Implementation and
plots.

First, we define ‘Schwarz-Christoffel’ integral and build up to the theorem on defining a
conformal map F which maps H conformally to P. We state the theorem here:

Theorem 1. If F': H — P is a conformal map from the upper half-plane to the polygonal
region P and maps the points Ay,..., A,_1,00 € R to the vertices of a polygon p, then
there exists C1 and Cy such that

zZ d(
F(z) = 01/0 (C— AP (C— A, )t

+ O (1)

where we will make these notation precise in the forth coming discussion.

0.2 The Schwarz-Christoffel Integral

We define the Schwarz-Christoffel integral by

s6)= | C— AP (A @

where A; < Ay < --- < A, and we assume the exponents satisfy [, < 1 for all & with
1< 325 Bre

Now, we make sense of the integrand in (1). We define (2 — Ay )% the branch (defined
in the complex plane slit along the infinite ray {Ay + iy : y < 0}) which is positive when
z=1x € (Ag,0). Therefore,

_ Bk ; ;
(2 — Ap)Pr = {(x A) if z is real and x > Ay, @

|z — Ag|Prei™Px if x is real and x < Ay,

By exercise 19 in [1], the complex plane slit along the union of the rays (J;_,{Ax + iy :
y < 0} (denote it by €2) is simply connected. Therefore, S(z) is holomorphic on 2. Since



Br < 1, this implies that we can integrate ({ — A;) ™% around Ay, for k = 1,...,n. This
means that S is continuous up to the real line, including A,. We have that S can be
integrated along any path that avoids the open slits (J;_,{Ax + iy : y < 0}.

For large |C|, there exists some positive constant ¢ so that

n

Hg Ak =B

< cl¢|m X (3)

Given Y ), Oy > 1, this implies for sufficiently large |z|, we have
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exists and is finite. To see this, integrating |¢|~ =" along a path starting at iy with
y > 1 to ioco exists and is finite (by the p-test). Using this fact and Cauchy’s theorem
imply that lim,_, ., S(re) exists and is independent of the angle 6 € [0, 27] (call this
limit ay). We let ag := S(Ag) for k=1,...,n

We introduce a proposition that says that S maps R onto the edges that bound a
polygon whose vertices are given by aq, ..., a,.

Theorem 2. Suppose S(z) is given by (1).

(i) If Yp_, B = 2, and p denotes the polygon whose vertices are given (in order) by
ai,...,an, then S maps the real axis onto p — {ax} (meaning R gets mapped into the
edges of the polygon). The point ay, lies on the segment [a,,aq1] and is the image of the
point at infinity. Also, the interior angle at the vertex ay 1s apm where o =1 — G.

(ii) There is a similar conclusion when 1 < > iy Bk < 2, except now the image of the
extended line R is the polygon of n+ 1 sides with vertices ay,as, ..., a,, . The angle at
the verter oo 1S Qoo™ Where oo = 1 — Boo, where fog =2 — >0, B
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Figure 1: Action of the integral S(z)

Remember we are trying to find a conformal map from H to a given region P that
is bounded by a polygon, and the above theorem does not address this. We give two
reasons for this.

e [t is not true for general n and generic choices of Ay,..., A, that the image of §
under R is a simple polygon. Also it is not generally true that the mapping S is
conformal on HI.

e The theorem above does not show that starting with a simply connected region P
whose boundary is a polygon p, the mapping S is a conformal map from H to P
for certain choices of Aq,..., A, and simple modifications. It turns out this is true
and we will discuss this further.

0.3 Boundary Behavior

In this section, we consider a polygonal region P, a bounded simply connected open
set whose boundary is a polygonal line p.

We like to study conformal maps from the half-plane H to P, so we consider studying
conformal maps from the disk D to P (and their behaviors on dD). We introduce a
theorem that discusses this.

Theorem 3. If F: D — P is a conformal map, then F extends to a continuous bijection
from the closure D of the disk D to the closure P of the polygonal region. More specifically,
F is a bijection from 0D to the boundary polygon p.

The idea is to show that if 2y € dD, then lim,_.,, F(z) exists. We introduce three (3)
lemmas (each depends on the previous lemma). See [1] for more detail on the proof. The
first lemma we introduce, we assume f : D — C is conformal.

Lemma 4. For r € (0, %), denote C, by the circle centered at zg € 0D of radius r.
Suppose for all sufficiently small v, we are given two points z,. and z. on 0D and also on



C,. Let p(r) == |f(2, ) f(z0)|. Then there is a sequence {r,} of radii that converges to
0, and lim,_, p(r,) =

Lemma 5. Let zy € OD. Then F in Theorem 3 converges to a limit as z approaches z
inside OD.

Lemma 6. The conformal map F in Theorem 3 extends to a continuous function from
D to P.

Theorem 3 tells us that we extended F onto the closure of DD continuously. Similar
argument gives the inverse of F' (denoted by G : P — D) can be extended continuously
onto the closure of P. To show that these continuous extension are inverses of each
other, it amounts to taking a sequence z, € DD converging to z € JD and noting that
G(F(z,)) = 2z,. Take n — oo. The continuity of F, G on the closure of their domains give
G o F = id, where id : D — D. Repeating a similar argument gives F o G = id, where
id: P — P.

0.4 The mapping formula

Suppose P is a polygonal region bounded by a polygon p whose vertices are ordered
consecutively aq,as,...,a, € C with n > 3. Denote ma; to be the interior angle of ay
and define the exterior angle 73, with oy + Gr = 1. Since the exterior angles sum up to
27 in a polygon, we have > ., Br = 2.

Now, we want to consider conformal mappings of the half plane H to P. Recall that
w = = is a conformal mapping from H to D and also it is continuous on R. So from
§0.3, we have a conformal map from I to P, which is continuous on 9. Therefore, we

have a conformal map from H — P which maps R to the polygon p.

By the Riemann mapping theorem, we have an existence of a conformal mapping
F :H — P. We assume that none of the vertices of p corresponds to a point at infinity.
Therefore, there are A;,..., A, € R with A; < Ay <--- < A, so that F(Ay) = a,. We
have that F' maps [Ag, A1) to the line segment joined by ag, a1 denoted by [ag, axi1]-
Also, (—o0, A1]U[A,,, 00) is mapped into the edge [a,,, a1] where F' maps co to some point
(not equal to a; nor a,) on [a,, ai].
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Figure 2: The mapping F

Theorem 7. Given F : H — P a conformal map, there exist ¢i,co € C so that

F(z) =c15(2) + ¢ (1)

where S(z) is given in §0.2 (1).

Proof: Let 1 < k < n. Define A = {weH: A1 < Re(w) < Agy1}. Consider z € A.
Recall that F maps [Ax_1, Ax] to the line segment [ax_1,ar] on p and [Ay, Agi1] to the
line segment |ay, ary1] on p. These two line segments intersect at ar = F(Ay) at an angle
oy, (see Figure 2).

By picking a branch of the logarithm, we define

hi(2) = (F(2) — ag)'/o (1.1)

where z € A. Recall that F is continuous on the real line, so that hy is continuous on
[Ax_1, Ag11]. By construction of hy, angle between two line segments [ag_1,ax], [ak, axi1]
is agm, and definition of logarithm, we have hy([Ax_1, Axi1]) is a straight line segment
Ly in the complex plane with h(Ag) = 0. We can apply the Schwarz reflection principle
(scaling hy, by a rotation €, we have e®hy([Ay_1, Ag11]) € R for some angle 0), so hy, can
be analytically continued to a holomorphic function on the infinite strip A1 < z < Agi1



Figure 3: Schwarz Reflection

We claim that hj(z) # 0 on this infinite strip. If z € A, then through a computation, we
have

Flz)  _ hi(2)
F(z)— F(4) "h(2)

(1.2)

and by hypothesis F' is conformal on H, we have F'(z) # 0 so h)(z) # 0. By the Schwarz
Reflection Principle and the proof of Schwarz Reflection Principle, we have this holds in
the lower half-strip.

Now we argue that h)(z) # 0 for z € (Ax_1, Ar+1). We invoke proposition 1.1 page 206
in [1] to do this. Notice that the image of the small half disc centered at z € [Ag_1, A1)
and contained in H under hy lie on one side of L. We know that hy is injective on
this small half disc since F' is conformal. So the image of the small half disc centered at
z € [Ag_1, Ags1] and in the lower half plane under hy (via Schwarz Reflection principle)
lie on the opposite of Ly. Therefore, we have hj(z) # 0 for z € (Ag_1, Ax+1). Hence,
hi(z) # 0 for all z in the infinite strip Ax—1 < Re(z) < Agy1.

Through a simple calculation, we have F' = akh,;ﬂ’“h;c and F" = —ﬁkakhgﬁ’“_l(hz)Z +
akh,;ﬁ’“h’k’. We know that h has a zero of order 1 at Ay since hi(z) # 0 in the infinite
strip, so we have

F"(Z) B — B,
F’(Z) - Z—Ak +Ek(z)a (1.3)

where By, is holomorphic in the infinite strip. A similar result holds for k =1,k = 2:
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where Ey(z) is holomorphic in the infinite strip —oo < Re(z) < As, and

e B g (L.5)

where E,(z) is holomorphic in the infinite strip A,_1 < Re(z) < oc.

So far, we have developed that F is holomorphic on the infinite strips Ax_1 < Re(z) <
A1, —00 < Re(z) < Ag and A,—1 < Re(z) < oo. In short, we use Schwarz Reflection
Principle to analytically continue F on the exterior of a disc |z| < R (where R >
maxi<g<n |Ax|). We can also use the Schwarz principle to extend F across the segments
(—00, A1), (An, 00) since the image of these segments under F' is a line segment. The fact
that F maps H to a bounded region shows that the analytic continuation of F outside a
large disc is also bounded. Hence, holomorphic at oo by Riemann’s theorem on removable
singularities. Thus F" /F" is holomorphic at oo and we claim that it goes to 0 as |z| — oo.
We can expand F' at z = oo as

F(z):co—i—;—ir——l—--- (1.6)

valid for large |z|.

Term by term differentiation shows that F"/F' decays like 1/z as |z| becomes large, which
proves our claim.

Since the infinite strips overlap and cover C, we have

F”(Z) n ﬂk
o) +;Z_Ak (1.7)

is holomorphic on C and is 0 at co. By Liouville’s theorem, the quantity in (1.7) is zero.
Hence,

F”(z) - n ﬁk
F'(z) kz:;z—Ak (18)

From this, we argue that F'(z) = c¢(z — A)) ™"t -~ (2 — A,)"P". Denote this product by
Q(z). By taking logarithmic derivatives, we have



Q) b
o) = ;Z_Ak (1.9)

We have

dz \ Q(z) Q?
_ P
QR QQ
_5'<F_”_9’)
S Q\F Q
=0 (1.10)

where the last line follows by (1.8) and (1.9). Therefore, F'(z) = C1Q(z). Integrating
yields the desired result. U

We restate the theorem given in the introduction and provide a proof.

Theorem 8. If F' is a conformal map from H to the polygonal region P and maps the
points Ay, ..., A,_1,00 to the vertices of p, then there exist Cy,Cy € C so that

F(Z) - Cl/O (C _ Al)ﬁl R (C — An_l)/@nfl

+ Oy (2)

Proof: By translation, we may assume A; #0 forj=1,...,n—1. Let A}, > 0. Consider
the fractional linear transformation

2(z) = 4; - )

See [1] (Theorem 2.4 on page 222), we have that ® is an automorphism of H. Let A} =
O(Ag) for k=1,2,....,n—1, and we see that A’ = ®(00). Since F(Ag) = ai, we have

(Fo® NY(AY)=ap, foralk=1,2,....n (4)

We can apply Theorem 7 to find that

(Fod (2 =, /OZ — dC 5 + Cy (5)




Using the substitution ¢ = ®(w), with differential d{ = fv—lg, and Y p_, Br = 2 we have

Foatn=c [ - ‘o
»-1(0) (A;';—% —AT)ﬁl(A;k’L_i _A:L)ﬁnwg
v dw
=C / +C
1 -1(0) (w(A;'fL — AT) — 1)51 . (w(A;’kl _ A:,—l) N 1)571—1 2
v dw
=C / +C
1 o (w(A;k1 — A’l‘) — 1)31 - (w(A;; _ A;;_1> _ 1)ﬂn71 2

271 dw
/0 (w—1/(A; = A})Pr - (w = 1/(A;, — A} )P

+C5 (6)

By definition of ®, we have Ay, = ﬁ and let z = ®~1(2') in the previous equation and
we get tor
z dw
F(z)=C] C 7
(%) 1/0 (w— AP (w — A,_j)Pa + G (7)
which proves our claim. O

0.5 Matlab Implementation
0.5.1 Schwarz Christoffel (SC) toolbox

We point users to the website unmn.math. udel . edu/=driscoll/SC/ to retrieve the
Matlab Schwarz Christoffel toolbox. Unpack the folder to your current working Matlab
directory and open that folder.

0.5.2 Matlab SC Algorithm

Given a polygon p with vertices ay,...,a, in C, with interior angles cym (Bpm exterior
angles) and Ay, ..., An_1, A, = 00 in Theorem 8 of §0.4 (call them prevertices). Recall
the Schwarz-Christoffel formula for the map F' is given in Theorem 8 of §0.4.

According to (2], the main practical difficulty with this formula is that, with the exception
in special cases, the prevertices A; can’t be analytically computed. [2] mentions that once
three of A;’s are chosen, with one being A,,, the remaining n—3 prevertices are determined
uniquely and can be obtained by solving a system of nonlinear equations. This is known
as Schwarz-Christoffel parameter problem. Once the parameters are solved, the
constant Cy in Theorem 8 §0.4 can be found, and F, F~' can be numerically solved.



0.5.3 A Numerical Example: Schwarz Christoffel formula (Conformal map)
from H to P

Consider a polygon P with vertices 1 +1i,—1 414, —1—1,1—1i (see image below). The tool
box computes the images of curves in H under the conformal map and plots them (see
plot below). Note that curves in H which intersect orthogonally corresponds to curves
intersecting orthogonally in P. Here is the Matlab code:

1 p = polygon([1+i -1+i -1-i 1-i]);
2 f = hplmap(p);
3 axis([-1.5 1.5 -1.5 1.5]), hold on
4 plot(f);
Image of the upper half plane under the conformal map f
1r _
0.5 b
% o ]
-05 - E
-1r 4

X-axis

Typing f in the command window gives the prevertices —1,0, 1, 00 (see Figure 4 below).
SC toolbox fixes these three prevertices —1, 1, 0o as three default prevertices and determines
the remaining prevertex (. Note we have the values of «; given in Figure 4. Try these
commands to get values of F' at these prevertices:

> f(—1)
> f(0)
> f(1)
> f(inf)

Try these commands to get several values of F'~! at these vertices:

> evalinv(f, 1+ 1)
> evalinv(f, —1 + 1)
> evalinv(f, —1 —9)



> evalinv(f,1 —1)

>> T

hplmap object:

vertex alpha prevertex
1.00000 + 1.000001 0.50000 -1.000000000000e+00
-1.00000 + 1.00000i 0.50000 0.000000000000e+00
-1.00000 - 1.000001 0.50000 1.000000000000e+00
1.00000 — 1.000001 0.50000 Inf

c = 0.76275976 - 9.341113e-171

Apparent accuracy is 1.12e-11

Figure 4: Data on the conformal map F

0.5.4 Another Numerical Example: Schwarz Christoffel formula (Conformal
map) from D to P

There is another variant of the Schwarz Christoffel formula given by a conformal map

from D to a polygon P. The conformal F': D — P is similar to Theorem 8 in §0.4 except
we have the following:

z dC
R0 =6 | At W

where A; # oo for 1 <i<n, A; € ID.

We now consider a polygon with vertices ¢, —1 +¢,—1 — 7,1 —¢,1,0. The Matlab code
below generates Figure 5 and Figure 6:

p = polygon([i -1+i -1-i 1-i 10]);
plot(p);
f = diskmap(p)

plot(f)

B W N =




0.5 b

Imaginary axis
o
T

-1 -0.5 0 0.5 1
Real axis

Figure 5: Image of circles under the conformal map F

diskmap object:

vertex alpha prevertex arg/pi
0.00000 + 1.000001 0.50000 0.98974 + 0.142861 0.045628948204
-1.00000 + 1.000001 0.50000 0.98811 + 0.15378i 0.049144854230
-1.00000 — 1.000001 0.50000 0.95325 + 0.30217i 0.097710854029
1.00000 - 1.000001 0.50000 -1.00000 + 0.00000i 1.000000000000
1.00000 + 0.000001 0.50000 -0.00000 - 1.00000i 1.500000000000
0.00000 + 0.000001 1.50000 1.00000 + 0.000001 2.000000000000

c = —-0.48783135 + 0.29499692i
Conformal center at 0.4955 - 0.5829i

Apparent accuracy is 6.31e-08

Figure 6: Image of circles under the conformal map F

The image of the origin under F' is called the conformal center, and mapping ten evenly
spaced circles centered at 0 € DD gives the distorted circles in Figure 5.
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