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The Schwarz-Christoffel Transformation

0.1 Introduction

We consider a simple polygon and ask whether there is a conformal map from H to the
polygon denoted by P . The answer is yes and such conformal map is written in terms of
a ‘Schwarz-Christoffel’ integral. At the end, we will include Matlab Implementation and
plots.

First, we define ‘Schwarz-Christoffel’ integral and build up to the theorem on defining a
conformal map F which maps H conformally to P . We state the theorem here:

Theorem 1. If F : H→ P is a conformal map from the upper half-plane to the polygonal
region P and maps the points A1, . . . , An−1,∞ ∈ R̄ to the vertices of a polygon p, then
there exists C1 and C2 such that

F (z) = C1

∫ z

0

dζ

(ζ − A1)β1 ∙ ∙ ∙ (ζ − An−1)βn−1
+ C2 (1)

where we will make these notation precise in the forth coming discussion.

0.2 The Schwarz-Christoffel Integral

We define the Schwarz-Christoffel integral by

S(z) =

∫ z

0

dζ

(ζ − A1)β1 ∙ ∙ ∙ (ζ − An)βn
(1)

where A1 < A2 < ∙ ∙ ∙ < An and we assume the exponents satisfy βk < 1 for all k with
1 <

∑n
k=1 βk.

Now, we make sense of the integrand in (1). We define (z − Ak)
βk the branch (defined

in the complex plane slit along the infinite ray {Ak + iy : y ≤ 0}) which is positive when
z = x ∈ (Ak,∞). Therefore,

(z − Ak)
βk =

{
(x − Ak)

βk if x is real and x > Ak,

|x − Ak|βkeiπβk if x is real and x < Ak,
(2)

By exercise 19 in [1], the complex plane slit along the union of the rays
⋃n

k=1{Ak + iy :
y ≤ 0} (denote it by Ω) is simply connected. Therefore, S(z) is holomorphic on Ω. Since
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βk < 1, this implies that we can integrate (ζ − Ak)
−βk around Ak for k = 1, . . . , n. This

means that S is continuous up to the real line, including Ak. We have that S can be
integrated along any path that avoids the open slits

⋃n
k=1{Ak + iy : y < 0}.

For large |ζ|, there exists some positive constant c so that

∣
∣
∣
∣
∣

n∏

k=1

(ζ − Ak)
−βk

∣
∣
∣
∣
∣
≤ c|ζ|−

∑
βk (3)

Given
∑n

k=1 βk > 1, this implies for sufficiently large |z|, we have

∫ ∞

z

1

|ζ|
∑

βk
dζ (4)

exists and is finite. To see this, integrating |ζ|−
∑

βk along a path starting at iy with
y � 1 to i∞ exists and is finite (by the p-test). Using this fact and Cauchy’s theorem
imply that limr→+∞ S(reiθ) exists and is independent of the angle θ ∈ [0, 2π] (call this
limit a∞). We let ak := S(Ak) for k = 1, . . . , n.

We introduce a proposition that says that S maps R onto the edges that bound a
polygon whose vertices are given by a1, . . . , an.

Theorem 2. Suppose S(z) is given by (1).

(i) If
∑n

k=1 βk = 2, and p denotes the polygon whose vertices are given (in order) by
a1, . . . , an, then S maps the real axis onto p − {a∞} (meaning R gets mapped into the
edges of the polygon). The point a∞ lies on the segment [an, a1] and is the image of the
point at infinity. Also, the interior angle at the vertex ak is αkπ where αk = 1 − βk.

(ii) There is a similar conclusion when 1 <
∑n

k=1 βk < 2, except now the image of the
extended line R is the polygon of n+1 sides with vertices a1, a2, . . . , an, a∞. The angle at
the vertex a∞ is α∞π where α∞ = 1 − β∞, where β∞ := 2 −

∑n
k=1 βk.
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Figure 1: Action of the integral S(z)

Remember we are trying to find a conformal map from H to a given region P that
is bounded by a polygon, and the above theorem does not address this. We give two
reasons for this.

• It is not true for general n and generic choices of A1, . . . , An that the image of S
under R is a simple polygon. Also it is not generally true that the mapping S is
conformal on H.

• The theorem above does not show that starting with a simply connected region P
whose boundary is a polygon p, the mapping S is a conformal map from H to P
for certain choices of A1, . . . , An and simple modifications. It turns out this is true
and we will discuss this further.

0.3 Boundary Behavior

In this section, we consider a polygonal region P , a bounded simply connected open
set whose boundary is a polygonal line p.

We like to study conformal maps from the half-plane H to P , so we consider studying
conformal maps from the disk D to P (and their behaviors on ∂D). We introduce a
theorem that discusses this.

Theorem 3. If F : D→ P is a conformal map, then F extends to a continuous bijection
from the closure D of the disk D to the closure P of the polygonal region. More specifically,
F is a bijection from ∂D to the boundary polygon p.

The idea is to show that if z0 ∈ ∂D, then limz→z0 F (z) exists. We introduce three (3)
lemmas (each depends on the previous lemma). See [1] for more detail on the proof. The
first lemma we introduce, we assume f : D→ C is conformal.

Lemma 4. For r ∈ (0, 1
2
), denote Cr by the circle centered at z0 ∈ ∂D of radius r.

Suppose for all sufficiently small r, we are given two points zr and z′r on ∂D and also on
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Cr. Let ρ(r) := |f(zr) − f(z′r)|. Then there is a sequence {rn} of radii that converges to
0, and limn→∞ ρ(rn) = 0

Lemma 5. Let z0 ∈ ∂D. Then F in Theorem 3 converges to a limit as z approaches z0

inside ∂D.

Lemma 6. The conformal map F in Theorem 3 extends to a continuous function from
D to P .

Theorem 3 tells us that we extended F onto the closure of D continuously. Similar
argument gives the inverse of F (denoted by G : P → D) can be extended continuously
onto the closure of P . To show that these continuous extension are inverses of each
other, it amounts to taking a sequence zn ∈ D converging to z ∈ ∂D and noting that
G(F(zn)) = zn. Take n → ∞. The continuity of F,G on the closure of their domains give
G ◦ F = id, where id : D → D. Repeating a similar argument gives F ◦ G = id, where
id : P → P .

0.4 The mapping formula

Suppose P is a polygonal region bounded by a polygon p whose vertices are ordered
consecutively a1, a2, . . . , an ∈ C with n ≥ 3. Denote παk to be the interior angle of ak

and define the exterior angle πβk with αk + βk = 1. Since the exterior angles sum up to
2π in a polygon, we have

∑n
k=1 βk = 2.

Now, we want to consider conformal mappings of the half plane H to P . Recall that
w = i−z

i+z
is a conformal mapping from H to D and also it is continuous on R. So from

§0.3, we have a conformal map from D to P , which is continuous on ∂D. Therefore, we
have a conformal map from H→ P which maps R to the polygon p.

By the Riemann mapping theorem, we have an existence of a conformal mapping
F : H→ P . We assume that none of the vertices of p corresponds to a point at infinity.
Therefore, there are A1, . . . , An ∈ R with A1 < A2 < ∙ ∙ ∙ < An so that F (Ak) = ak. We
have that F maps [Ak, Ak+1] to the line segment joined by ak, ak+1 denoted by [ak, ak+1].
Also, (−∞, A1]∪ [An,∞) is mapped into the edge [an, a1] where F maps ∞ to some point
(not equal to a1 nor an) on [an, a1].
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Figure 2: The mapping F

Theorem 7. Given F : H→ P a conformal map, there exist c1, c2 ∈ C so that

F (z) = c1S(z) + c2 (1)

where S(z) is given in §0.2 (1).

Proof: Let 1 < k < n. Define Ã := {w ∈ H : Ak−1 ≤ Re(w) ≤ Ak+1}. Consider z ∈ Ã.
Recall that F maps [Ak−1, Ak] to the line segment [ak−1, ak] on p and [Ak, Ak+1] to the
line segment [ak, ak+1] on p. These two line segments intersect at ak = F (Ak) at an angle
παk (see Figure 2).

By picking a branch of the logarithm, we define

hk(z) = (F (z) − ak)
1/αk (1.1)

where z ∈ Ã. Recall that F is continuous on the real line, so that hk is continuous on
[Ak−1, Ak+1]. By construction of hk, angle between two line segments [ak−1, ak], [ak, ak+1]
is αkπ, and definition of logarithm, we have hk([Ak−1, Ak+1]) is a straight line segment
Lk in the complex plane with h(Ak) = 0. We can apply the Schwarz reflection principle
(scaling hk by a rotation eiθ, we have eiθhk([Ak−1, Ak+1]) ∈ R for some angle θ), so hk can
be analytically continued to a holomorphic function on the infinite strip Ak−1 < z < Ak+1
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Figure 3: Schwarz Reflection

We claim that h′
k(z) 6= 0 on this infinite strip. If z ∈ Ã, then through a computation, we

have

F ′(z)

F (z) − F (Ak)
= αk

h′
k(z)

hk(z)
(1.2)

and by hypothesis F is conformal on H, we have F ′(z) 6= 0 so h′
k(z) 6= 0. By the Schwarz

Reflection Principle and the proof of Schwarz Reflection Principle, we have this holds in
the lower half-strip.

Now we argue that h′
k(z) 6= 0 for z ∈ (Ak−1, Ak+1). We invoke proposition 1.1 page 206

in [1] to do this. Notice that the image of the small half disc centered at z ∈ [Ak−1, Ak+1]
and contained in H under hk lie on one side of Lk. We know that hk is injective on
this small half disc since F is conformal. So the image of the small half disc centered at
z ∈ [Ak−1, Ak+1] and in the lower half plane under hk (via Schwarz Reflection principle)
lie on the opposite of Lk. Therefore, we have h′

k(z) 6= 0 for z ∈ (Ak−1, Ak+1). Hence,
h′

k(z) 6= 0 for all z in the infinite strip Ak−1 < Re(z) < Ak+1.

Through a simple calculation, we have F ′ = αkh
−βk

k h′
k and F ′′ = −βkαkh

−βk−1
k (h′

k)
2 +

αkh
−βk

k h′′
k. We know that h has a zero of order 1 at Ak since h′

k(z) 6= 0 in the infinite
strip, so we have

F ′′(z)

F ′(z)
=

−βk

z − Ak

+ Ek(z), (1.3)

where Ek is holomorphic in the infinite strip. A similar result holds for k = 1, k = 2:
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F ′′(z)

F ′(z)
= −

β1

z − A1

+ E1(z) (1.4)

where E1(z) is holomorphic in the infinite strip −∞ < Re(z) < A2, and

F ′′(z)

F ′(z)
= −

βn

z − An

+ En(z) (1.5)

where En(z) is holomorphic in the infinite strip An−1 < Re(z) < ∞.

So far, we have developed that F is holomorphic on the infinite strips Ak−1 < Re(z) <
Ak+1, −∞ < Re(z) < A2 and An−1 < Re(z) < ∞. In short, we use Schwarz Reflection
Principle to analytically continue F on the exterior of a disc |z| ≤ R (where R >
max1≤k≤n |Ak|). We can also use the Schwarz principle to extend F across the segments
(−∞, A1), (An,∞) since the image of these segments under F is a line segment. The fact
that F maps H to a bounded region shows that the analytic continuation of F outside a
large disc is also bounded. Hence, holomorphic at ∞ by Riemann’s theorem on removable
singularities. Thus F ′′/F ′ is holomorphic at ∞ and we claim that it goes to 0 as |z| → ∞.
We can expand F at z = ∞ as

F (z) = c0 +
c1

z
+

c2

z2
+ ∙ ∙ ∙ (1.6)

valid for large |z|.

Term by term differentiation shows that F ′′/F ′ decays like 1/z as |z| becomes large, which
proves our claim.

Since the infinite strips overlap and cover C, we have

F ′′(z)

F ′(z)
+

n∑

k=1

βk

z − Ak

(1.7)

is holomorphic on C and is 0 at ∞. By Liouville’s theorem, the quantity in (1.7) is zero.
Hence,

F ′′(z)

F ′(z)
= −

n∑

k=1

βk

z − Ak

(1.8)

From this, we argue that F ′(z) = c(z − A1)
−β1 ∙ ∙ ∙ (z − An)−βn. Denote this product by

Q(z). By taking logarithmic derivatives, we have
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Q′(z)

Q(z)
= −

n∑

k=1

βk

z − Ak

(1.9)

We have

d

dz

(
F ′(z)

Q(z)

)

=
F ′′Q − F ′Q′

Q2

=
F ′′

Q
−

F ′

Q

Q′

Q

=
F ′

Q

(
F ′′

F ′
−

Q′

Q

)

= 0 (1.10)

where the last line follows by (1.8) and (1.9). Therefore, F ′(z) = C1Q(z). Integrating
yields the desired result. �

We restate the theorem given in the introduction and provide a proof.

Theorem 8. If F is a conformal map from H to the polygonal region P and maps the
points A1, . . . , An−1,∞ to the vertices of p, then there exist C1, C2 ∈ C so that

F (z) = C1

∫ z

0

dζ

(ζ − A1)β1 ∙ ∙ ∙ (ζ − An−1)βn−1
+ C2 (2)

Proof: By translation, we may assume Aj 6= 0 for j = 1, . . . , n−1. Let A∗
n > 0. Consider

the fractional linear transformation

Φ(z) = A∗
n −

1

z
(3)

See [1] (Theorem 2.4 on page 222), we have that Φ is an automorphism of H. Let A∗
k =

Φ(Ak) for k = 1, 2, . . . , n − 1, and we see that A∗
n = Φ(∞). Since F (Ak) = ak, we have

(F ◦ Φ−1)(A∗
k) = ak for all k = 1, 2, . . . , n (4)

We can apply Theorem 7 to find that

(F ◦ Φ−1)(z′) = C1

∫ z′

0

dζ

(ζ − A∗
1)

β1 ∙ ∙ ∙ (ζ − A∗
n)βn

+ C2 (5)
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Using the substitution ζ = Φ(w), with differential dζ = dw
w2 , and

∑n
k=1 βk = 2 we have

(F ◦ Φ−1)(z′) = C1

∫ Φ−1(z′)

Φ−1(0)

dw

(A∗
n − 1

w
− A∗

1)
β1 ∙ ∙ ∙ (A∗

n − 1
w
− A∗

n)βnw2
+ C2

= C1

∫ Φ−1(z′)

Φ−1(0)

dw

(w(A∗
n − A∗

1) − 1)β1 ∙ ∙ ∙ (w(A∗
n − A∗

n−1) − 1)βn−1
+ C2

= C1

∫ Φ−1(z′)

0

dw

(w(A∗
n − A∗

1) − 1)β1 ∙ ∙ ∙ (w(A∗
n − A∗

n−1) − 1)βn−1
+ C ′

2

= C ′
1

∫ Φ−1(z′)

0

dw

(w − 1/(A∗
n − A∗

1))
β1 ∙ ∙ ∙ (w − 1/(A∗

n − A∗
n−1))

βn−1
+ C ′

2 (6)

By definition of Φ, we have Ak = 1
A∗

n−A∗
k

and let z = Φ−1(z′) in the previous equation and
we get

F (z) = C ′
1

∫ z

0

dw

(w − A1)β1 ∙ ∙ ∙ (w − An−1)βn−1
+ C ′

2, (7)

which proves our claim. �

0.5 Matlab Implementation

0.5.1 Schwarz Christoffel (SC) toolbox

We point users to the website www. math. udel. edu/ ~ driscoll/ SC/ to retrieve the
Matlab Schwarz Christoffel toolbox. Unpack the folder to your current working Matlab
directory and open that folder.

0.5.2 Matlab SC Algorithm

Given a polygon p with vertices a1, . . . , an in C, with interior angles αkπ (βkπ exterior
angles) and A1, . . . , An−1, An = ∞ in Theorem 8 of §0.4 (call them prevertices). Recall
the Schwarz-Christoffel formula for the map F is given in Theorem 8 of §0.4.

According to [2], the main practical difficulty with this formula is that, with the exception
in special cases, the prevertices Ai can’t be analytically computed. [2] mentions that once
three of Ai’s are chosen, with one being An, the remaining n−3 prevertices are determined
uniquely and can be obtained by solving a system of nonlinear equations. This is known
as Schwarz-Christoffel parameter problem. Once the parameters are solved, the
constant C1 in Theorem 8 §0.4 can be found, and F, F−1 can be numerically solved.
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0.5.3 A Numerical Example: Schwarz Christoffel formula (Conformal map)
from H to P

Consider a polygon P with vertices 1 + i,−1 + i,−1− i, 1− i (see image below). The tool
box computes the images of curves in H under the conformal map and plots them (see
plot below). Note that curves in H which intersect orthogonally corresponds to curves
intersecting orthogonally in P . Here is the Matlab code:

1 p = polygon([1+i -1+i -1-i 1-i]);
2 f = hplmap(p);
3 axis([-1.5 1.5 -1.5 1.5]), hold on
4 plot(f);

Typing f in the command window gives the prevertices −1, 0, 1,∞ (see Figure 4 below).
SC toolbox fixes these three prevertices −1, 1,∞ as three default prevertices and determines
the remaining prevertex 0. Note we have the values of αk given in Figure 4. Try these
commands to get values of F at these prevertices:

� f(−1)
� f(0)
� f(1)
� f(inf)

Try these commands to get several values of F−1 at these vertices:

� evalinv(f, 1 + i)
� evalinv(f,−1 + i)
� evalinv(f,−1 − i)
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� evalinv(f, 1 − i)

Figure 4: Data on the conformal map F

0.5.4 Another Numerical Example: Schwarz Christoffel formula (Conformal
map) from D to P

There is another variant of the Schwarz Christoffel formula given by a conformal map
from D to a polygon P . The conformal F : D→ P is similar to Theorem 8 in §0.4 except
we have the following:

F (z) = C1

∫ z

0

dζ

(ζ − A1)β1 ∙ ∙ ∙ (ζ − An)βn
+ C2 (1)

where Ai 6= ∞ for 1 ≤ i ≤ n, Ai ∈ ∂D.

We now consider a polygon with vertices i,−1 + i,−1 − i, 1 − i, 1, 0. The Matlab code
below generates Figure 5 and Figure 6:

1 p = polygon([i -1+i -1-i 1-i 10]);
2 plot(p);
3 f = diskmap(p)
4 plot(f)
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Figure 5: Image of circles under the conformal map F

Figure 6: Image of circles under the conformal map F

The image of the origin under F is called the conformal center, and mapping ten evenly
spaced circles centered at 0 ∈ D gives the distorted circles in Figure 5.
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