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1 Introduction

Teichmüller spaces parameterize the complex structures on fixed surfaces. In this report, we’ll satisfy our-
selves with only a general overview of the spaces. For a more in depth introduction to the topic, see [IT92].
We start with a comparison of two familiar spaces:

A surface is real connected two dimensional manifold.

A Riemann surface is a complex connected one dimensional manifold.

These curt definitions highlight the similarities between the two types of objects. Tucked away in the details,
there are enough discrepancies to spur a closer comparison.

1.1 Surfaces vs. Riemann Surfaces

An atlas on a Riemann surface induces what is called a complex structure - it allows for a coherent and
unambiguous definition of holomorphic maps. We’ll organize our comparison into two major categories:
First, we consider the effects of forgetting a complex structure. Then we exam the process of trying to add a
complex structure to a surface. For now, we’ll restrict our attention to closed surfaces and Riemann surfaces.

First, some vocabulary: An open subset U ⊆ S of a surface (or Riemann surface) S is a coordinate patch
if there exists a map f : U → R2 (resp. C) which is compatible with the atlas on S. A homeomorphism is
a continuous map with a continuous inverse, a diffeomorphism is a differentiable map with a differentiable
inverse, and a biholomorphism is a holomorphism with a holomorphic inverse. We’ll make use of the fact
that biholomorphic implies diffeomorphic, which implies homeomorphic.

1.1.1 Forgetting the Complex Structure.

Suppose that S is a Riemann surface, with complex structure induced by an atlas

A :=
(
{Uj ⊂ S}, {zj : Uj → C}; j ∈ I

)
.

In particular, for each pair k, j ∈ I such that Uk ∩ Uj 6= ∅ the transition function

zkj := zk ◦ z−1
j : zj

(
Uk ∩ Uj

)
−→ zk

(
Uk ∩ Uj

)
is biholomorphic. Every complex number w ∈ C can be identified with a point in R2, via the association
w ↔

(
Re(w), Im(w)

)
. Under this correspondence, the coordinate maps in A become maps to R2. Since

they’re biholomorphic by assumption, the transition maps become homeomorphisms between open subsets
of R2. Our first observation comes as a bit of a relief - we conclude that Riemann surfaces are surfaces.
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Figure 1: Each point on the surface S has two choices of orientation induced by its local coordinate patch.
These choices correspond to the right hand rule and choice of normal direction in R3. As long as the
transition maps preserve orientation (i.e. don’t send k̂ → −k̂) it will be possible to make a consistent global
choice of orientation.

1.1.2 Adding a Complex Structure

When is a surface a Riemann surface? If we were in a meticulous mood, we could say ‘never,’ since a
Riemann surface has more structure than a general topological surface. (In the same way that a set is not
a group, and a group is not a ring.) It turns out the answer is more nuanced than ‘never’ or ‘always.’

Suppose that S is a surface which admits a complex structure, i.e. there’s some atlas A over S with
biholomorphic transition maps zkj : zj(Uk ∩ Uj) −→ zk(Uk ∩ Uj). We claim that the mere existence of this
atlas implies that S is orientable - that is, there’s some consistent global definition of ‘clockwise’ on the
surface.

In what follows, we will identify C with R2 in the usual way, and use xkj := Re(zkj), ykj := Im(zkj) to
denote the real and imaginary parts of the transition maps, so that zkj = xkj + iykj .

On each coordinate path Uj , the map zj : Uj → R2 induces two choices of orientation in Uj . Namely,
if we embed R2 ↪→ R3 then these orientations correspond choice of unit normal (with orientation following
the right hand rule.) As long as the transition maps preserve orientation in R2, we will be able to make a
compatible choice of orientation in each coordinate patch.

A map f : R2 → R2 preserves orientation exactly when its Jacobian has positive determinant. For a
transformation map zkj : zj(Uk ∩ Uj)→ zk(Uk ∩ Uj) the relevant quantity is

det J(zkj) = det


∂xkj
∂x

∂xkj
∂y

∂ykj
∂x

∂ykj
∂y

 =
∂xkj
∂x

∂ykj
∂y
− ∂xkj

∂y

∂ykj
∂x

.

Since the transition maps are diffeomorphisms, we know that this determinant is non-zero. By assumption,
zkj is holomorphic, and hence also satisfies the Cauchy-Riemann equations:

∂xkj
∂x

=
∂ykj
∂y

;
∂xkj
∂y

= −∂ykj
∂x

.

This implies that

det J(zkj) =

(
∂xkj
∂x

)2

+

(
∂xkj
∂y

)2

> 0.

This leads to our second major conclusion: The existence of complex structure implies that a surface is
orientable.

Compact oriented surfaces are classified (up to homeomorphism!) by their genus. Suppose that Σg is
a surface of genus g. To construct Σg, we start with a regular polygon with 4g sides laying in R2 then
identify pairs of sides. See Figure 2 for details. The result is a surface with coordinate charts induced from
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Figure 2: Building Σ3 as a quotient of R2. Sides with the same label are glued together according to the
directions indicated by arrows.

the identity map R2 → R2. By considering the polygon as a subset of C instead of R2, the same process
produces a Riemann surface.

In conclusion, every compact, orientable surface can be made into a Riemann surface.

1.2 Various Complex Structures

A closer look at the relevant notions of equivalence for our two types of surfaces hints that the situation is
more involved than the preceding discussion would imply.

To be concrete, we’ll need a few more definitions. A map f : S → S′ between two (Riemann) surfaces is
called a homeomorphism if for every pair of coordinate patches U ⊂ S and U ′ ⊂ S′, with coordinate maps
z : U → R2 and w : U ′ → R2 such that f(U) ⊂ U ′, the composite map w ◦ f ◦ z−1 is homeomorphic on its
domain of definition.

Similarly, a map between Riemann surfaces is called biholomorphic if the corresponding definition holds,
with R2 replaced by C and the composite map biholomorphic. Two (Riemann) surfaces are homeomorphic
if there exists a homeomorphism between them, and two Riemann surfaces1 are biholomorphic if there exists
a biholomorphism between them.

Biholomorphic implies homeomorphic, but the converse generally is not true. So, we direct our attention
at the various complex structures defined over a fixed surface. This is where the subtly lies - it turns out
that, in general, there are infinitely many non-equivalent complex structures associated to each fixed surface.
Teichmüller spaces parametrize this collection of structures.

2 Teichmüller Spaces: Two Perspectives.

We’ll give two descriptions of Teichmller spaces and prove that they coincide.

2.1 Marked Riemann Surfaces

We start by definition the Teichmüller space of genus g, written Tg. Recall that the fundamental group
associated to a space X, written π1(X, p), is generated by homotopy classes of maps S1 → X that pass
through p. For connected manifolds the choice of base point p does not affect the group’s structure. The
fundamental group of a Riemann surface R of genus g is generated by 2g elements. A set of generators
Σp = {[Aj ], [Bj ] | j = 1, . . . , g} of π(R, p) is called a marking on R.

1Without some complex structure in place, it makes very little sense to talk about ‘biholomorphic surfaces.’
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Figure 3: Collections of paths associated with the markings Σp =
{

[A1], [A2], [A3], [B1], [B2], [B3]
}

, and

Σ′p =
{

[A′1], [A2], [A3], [B1], [B2], [B3]
}

on a surface of genus 3.

Two pairs (R,Σ′p) and (S,Σq) of marked closed Riemann surfaces are called equivalent if there’s some
biholomorphic map f : R→ S and some continuous curve Γ connecting p to f(q) on S such that

[C ′i] = [Γ−1 · (f ◦ Ci) · Γ]

for all C ′i, Ci in Σ′p and Σp, respectively. Note, in particular, that this equivalence implies that R and S have
the same genus. The equivalence class of a pair (S,Σp) is denoted [S,Σp] and the set of all such classes is
called the Teichmller space Tg.

2.2 Orientation Preserving Diffeomorphisms

Fix a closed Riemann surface R. The Teichmüller space T (R) associated to R is defined as follows. Start
with the set {(S, f)} of orientation preserving diffeomorphisms f : R → S, where S can be any Riemann
surface. Two such diffeomorphisms f0 : R→ S0 and f1 : R→ S1 are equivalent, written (S0, f0) ∼ (S1, f1),
if the composite map

f1 ◦ f−1
0 : S0 −→ S1

is homotopic to some biholomorphic map h : S0 → S1. In other words, there’s some map (called a homotopy)

H : [0, 1]× S0 −→ S1

Which is continuous in the first variable, such that H(t, ·) : S0 → S1 is an orientation preserving diffeomor-
phism for each t ∈ [0, 1], H(0, ·) = f1 ◦ f−1

0 (·), and H(1, ·) = h(·).

Claim: ∼ is an equivalence relation.
Each (S, f) is equivalent to itself, since f ◦ f−1 : S → S is the identity map, and hence biholomorphic.

Suppose that (S0, f0) ∼ (S1, f1) and (S1, f1) ∼ (S2, f2). We want to show that (S0, f0) ∼ (S2, f2). Let
H01 : [0, 1] × S0 → S1 and H12 : [0, 1] × S1 → S2 denote homotopies connecting f1 ◦ f−1

0 and f2 ◦ f−1
1 to

biholomorphisms. Define H02 as follows:

H02 : [0, 1]× S0 −→ S2

(t, z) 7−→ H12

(
t,H01(t, z)

)
Since the composition of continuous functions is again continuous, H02 is a homotopy. Furthermore,
H12(1, H01(1, ·)) is the composition of two biholomorphisms and hence biholomorphic and H02(0, ·) =
H12(0, H01(0, ·)) = f2 ◦ f−1

1

(
f1 ◦ f−1

0 (·)
)

= f2 ◦ f−1
0 (·). It follows that f2 ◦ f−1

0 : S0 → S2 is homotopic
to a biholomorphism. Hence (S0, f0) ∼ (S2, f2).

The space of all such equivalence classes
{

[S, f ] | f : R→ S
}

is identified with T (R).
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Figure 4: A schematic of the various maps and spaces involved in the proof that ΦΣ : T (R)→ Tg is surjective.
The diffeomorphism between the disks is pulled back to one between the polygons, which is projected to the
Riemann surfaces, via the usual quotient map.

2.3 Comparing the Definitions

The above definitions are both based on notions of equivalence which are finer than biholomorphisms. We
claim that the resulting spaces can be identified with each other.

In fact, for any marked closed Riemann surface [R,Σp] ∈ Tg, the map

ΦΣp
: T (R) −→ Tg

[S, f ] −→ [S, f∗(Σp)]

is bijective. Until one defined additional structure on the spaces - a metric for example - there is not much
we can consider beyond bijective correspondence.

To prove injectivity, one could assume that [S0, f0], [S1, f1] ∈ T (R) are such that

ΦΣp
([S0, f0]) = [S0, f0∗(Σ)] = [S1, f1∗(Σ)] = ΦΣp

([S1, f1])

We start by constructing a map g0 : R → S0 in the same equivalence class as [S0, f0]. By the definition
of equivalent marked Riemann surfaces, there’s some biholomorphism h : S1 → S0, and some (orientation
preserving) homeomorphism g : S0 → S0 such that g0 := g ◦ h ◦ f1 agrees with f0 on each Aj , Bj ∈ Σ and is
homotopic to the map h◦f1. Next, by definition, [S1, f1] = [S0, g0]. Now we can compare two maps R→ S0.
But,

S0\{f0(Ai), f0(Bi); i = 1, . . . , g} = S0\{g0(Ai), g0(Bi); i = 1, . . . , g} 'h

{
z ∈ C

∣∣ |z| < 1
}
.

Where 'h denotes homeomorphism here. Hence we have two maps f0, g0 which agree on the boundary of
some region homeomorphic to the unit disk. One could construct a homotopy between the maps on the disk
(By using, say, H(t, z) = tg′0(z) + (1− t)f ′0(z)) the pull back this homotopy to S0. This procedure confirms
that [S0, f0] = [S0, g0] = [S1, f1].

Next, we consider surjectivity. Namely we must show that for any [S,Σ′] ∈ Tg, there exists a homeomor-
phism f : R→ S such that

[S,Σ′] = ΦΣ([S, f ]) = [S, f∗(Σ).]

The construction starts with a few assumptions (which can always be met) and a few definitions. Let
Σ = {[Aj ], [Bj ]}gj=1 and Σ′ = {[A′j ], [B′j ]}gj=1, with p0, p

′
0 denoting the base points of the fundamental groups
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associated with Σ and Σ′, respectively. Define the sets

C =

g⋃
j=1

(Aj ∪Bj) , R0 = R \ C

C ′ =

g⋃
j=1

(
A′j ∪B′j

)
, S0 = S \ C ′

Note that C \ p and C ′ \ p′ are diffeomorphic, and furthermore we can construct some diffeomorphism, fΣ

between them which sends each Aj \ p→ A′j \ p′ and Bj → B′j \ p′ while preserving the orientations. Next,
both R0 and S0 admit orientation-preserving maps to closed polygons with 2g sides. (See Figure 2.) From
here, we use that the 2g-sided polygons corresponding to R0 and S0 are both homeomorphic to open disks
in the complex plain, 4R and 4S , respectively.

The diffeomorphism fΣ induces a homeomorphism ∂4R → ∂4S . In turn, this is homotopic to some
diffeomorphism between the boundaries. This follows from [Hir76, Chapter 8, Theorem 1.9], which we’ll call
the smoothing theorem. It is always possible to extended a diffeomorphism on the boundary of disks (in C
or R2) to ones on the interior, hence we have a map 4R →4S .

The proof concludes by pulling back the above map to one between the polygons, then projecting that
map to one R→ S.

These two are not the only popular descriptions of Teichmüller spaces. See [IT92, §1.4] for a description
based on quasiconformal mappings and Beltrami coefficients.

3 Connection to Moduli Spaces

Teichmüller spaces are closely related to moduli spaces of Riemann surfaces. In this section, we will describe
the correspondence in terms of the mapping class group.

We define a group action on T (R) by Diff+(R), the set of all homotopy classes [ϕ] of orientation-preserving
diffeomorphisms R → R. Elements of Diff+(R) are called Teichmüller modular transformations and each
such [ϕ] acts on T (R) by

[ϕ] · [S, f ] =
[
S, f ◦ ϕ−1

]
.

In the language of Tg, this acts only to change the marking on [S, f ]. Every closed Riemann surface S of the
same genus as R is diffeomorphic to R, so the quotient space

T (R)
/

Diff+(R)

should be identified with Mg, the moduli space of closed Riemann surfaces of genus g, i.e. the biholomor-
phism classes of all Riemann surfaces of genus g. This connection allows one to study the moduli space via
the Tiechmüller space, and is one of the primary features of Teichmüller spaces. For example, in [EM11] the
Teichmüller space is used to characterize the number of closed geodesics in Mg.
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