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The setting for twistors and indeed any local physical system is Minkowski spacetime. Minkowski spacetime
is the pair (R4, ηab), consisting of the vector space R4 and the 4× 4 diagonal matrix ηab given by:

ηab =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


providing the basis for R4 is an orthonormal one. Minkowski spacetime is a simplification of a more general
and complicated setting known as a Lorentzian manifold, although an understanding of Lorentzian manifolds
will not be required for now. The (−+ ++) signature of ηab is what distinguishes the first coordinate of R4

from the other three, regardless of which orthonormal basis is used. Let:

V a = (V 0, V 1, V 2, V 3)

represent a vector in R4 in the standard basis:

span{e0, e1, e2, e3}

where:

e0 = (1, 0, 0, 0)

e1 = (0, 1, 0, 0)

e2 = (0, 0, 1, 0)

e3 = (0, 0, 0, 1)

We may think of the first coordinate V 0 as representing some notion of time and the other three coordinates
as representing some notion of space. The quantity:

3∑
a=0

3∑
b=0

V aV bηab = −(V 0)2 + (V 1)2 + (V 2)2 + (V 3)2 (0.0.1)

is known as the spacetime interval and is invariant under a group of transformations known as the Lorentz
transformations. From this point onwards, if the same letter is given as a superscript and a subscript, then
a summation will be assumed over the appropriate range of values, this is called the Einstein summation
convention. For example, (0.0.1) will be written as V aV bηab from now on. ηab can be thought of as acting
as a sort of inner product and V a can be thought of as a four-velocity, that is, a vector representing the
velocity of a particle in both space and time. A particle whose four-velocity is non-zero but yet has no spacial
components is not moving through space but is still moving through time. A vector V a is said to be:

1. timelike if V aV bηab < 0,

2. spacelike if V aV bηab > 0 and

3. lightlike or null if V aV bηab = 0.

To give this machinery a physical interpretation, recall the postulate made by Einstein that states the speed
of light must remain unchanged in all frames of reference, that is, invariant under certain change of bases of
R4. Scientists had known that the speed of light was constant, and to great precision, before Einstein began
to think about such. The motivation for Einstein’s postulate was the application of the absence of absolute
motion, that is, that one can only determine a quantity called velocity when comparing the motion of oneself
to another object. To Einstein, the absence of absolute motion means one could continue to expect to view
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oneself in a mirror regardless of how fast they are travelling in relation to another observer. For the person
looking in the mirror, should they experience a delay in their reflection, they would know they were moving,
without reference to any other object, a violation of the absence of absolute motion. Einstein saw that the
only remedy to a constant speed of light and lack of absolute motion was his postulate. Denoting the speed
of light by c, this yields the condition:

(V 1)2 + (V 2)2 + (V 3)2 ≤ c2

on any four-velocity in any orthonormal basis of R3. However, spacetime is four-dimensional and physical
systems do not change based on which frame they are viewed in; this is where ηab comes in. An event is a
point in spacetime with respect to some frame of reference, events are invariant of frame and so will have
different coordinate values in different coordinate frames. Suppose however that the standard Euclidean
metric on R4 were to be used instead of ηab, that is, the distance between two events Xa and Y a is defined
to be the quantity:

(Xa − Y a)(Xb − Y b)δab = (X0 − Y 0)2 + (X1 − Y 1)2 + (X2 − Y 2)2 + (X3 − Y 3)2

invariant of orthonormal change of basis of R4. Then the time and space components would be completely
indistinguishable, this would immediately contradict Einstein’s postulate as the following example shows.
Suppose in some frame of reference that event Y a is related to event Xa by:

Y a = Xa + T a

where:

T a = (T 0, 0, 0, 0)

and T 0 > 0. Then an observer sitting stationary in this frame at:

(0, X1, X2, X3)

will experience the event Xa at a coordinate time of X0 and then event Y a at a coordinate time of X0 +T 0.
However, an appropriate rotation of R4 could give events Xa and Y a the same time coordinate. Since
rotations correspond to orthonormal changes of basis, it would then be possible to find a frame whereby the
two events occur simultaneously; this is not in of itself a problem, the problem is that an observer in this
frame would observe the sitting observer to pass between events instantaneously, since the sitting observer
is present at both events. This motivates the use of ηab and the Lorentz transformations that preserve the
spacetime interval V aV bηab. If events Xa and Y a satisfy the condition:

(Xa − Y a)(Xb − Y b)ηab < 0

which is an invariant quantity, then a particle travelling at less than the speed of light may travel from one
event to the next. If X0 and Y 0 are written as cX̃ and cỸ respectively, then X̃− Ỹ would correspond to the
time between events with respect to this coordinate frame; this is where the speed of light constant comes
into the model. Timelike vectors such as Xa − Y a correspond to the four-velocities of particles with mass.
In the same way, particles of light and other massless particles have four-velocities that are null. The set
of Lorentz transformations form a group with matrix multiplication as the binary operation, this group is
called the Lorentz group and is denoted by L. We have that L = O(1, 3), that is, the set of endomorphisms
of Rn (or more generally some four-dimensional vector space V ) preserving ηab:

Λab ∈ L ⇐⇒ ΛabΛ
c
dηac = ηbd

Note that the determinant of a Lorentz transformation is either 1 or −1. The Lorentz group can be split up
the into four components:

L = L↑+ ∪ L
↓
+ ∪ L

↑
− ∪ L

↓
−
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where ± indicates the sign of the determinant and ↑ and ↓ indicate Λ0
0 > 0 and Λ0

0 < 0 respectively.

The component L↑+ contains the identity and is referred to as the proper orthochronous Lorentz group. The
Lorentz transformations with negative determinants will change the orientation of a vector and the Lorentz
transformations with Λ0

0 < 0 will change a future pointing timelike vector to a past pointing timelike vector
and vice versa. For example, η is a time-reflection and:

1. diag(1,−1, 1, 1),

2. diag(1, 1,−1, 1) and

3. diag(1, 1, 1,−1)

are examples of space-reflections. Some of the following material closely follows the arguments laid out
in Chapter 4 of [1] and will require an understanding of differential geometry and sheaf cohomology. Let
V a ∈ V , where V is a four-dimensional real vector space and V a has components:

V a = (V 0, V 1, V 2, V 3)

In this light define:

Ψ(V a) =
1√
2

(
V 0 + V 3 V 1 + iV 2

V 1 − iV 2 V 0 − V 3

)
=

(
V 00′ V 01′

V 10′ V 11′

)
= V AA

′

where A and A′ range over the values 0, 1 and 0′, 1′ respectively. Note that this gives a bijective correspon-
dence between elements of V and 2× 2 Hermitian matrices. Furthermore, define the map:

V × SL(2,C)→ V

V AA
′
7→ tABV

BB′t
A′

B′

which corresponds to the multiplication of the matrix Ψ(V a) on the left by an element of SL(2,C) and on
the right by its Hermitian conjugate. Such a map will result in another Hermitian matrix whose determinant
is equal to that of Ψ(V a). This map defines a linear transformation on V a that preserves V aV bηab; these
maps are the familiar Lorentz transformations:

V a → ΛabV
b

Thus a map SL(2,C)→ L has been established to which it can be shown to possess the following properties:

1. It is a group homomorphism.

2. It maps into L↑+.

3. The kernel consists of I and −I where I is the 2× 2 identity matrix.

Now if V a is a null vector, that is, V aV bηab = 0, then Ψ(V a) has rank one and can thus be represented as
the outer product of a two-dimensional complex vector αA and its conjugate:

V AA
′

=

(
V 00′ V 01′

V 10′ V 11′

)
=

(
α0α0′ α0α1′

α1α0′ α1α1′

)
= αAαA

′

The αA that correspond to null vectors V a are called spinors and the two-dimensional complex vector space
to which they live and acted on by SL(2,C) is called spin-space, denoted by S. From the spin-space, the
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complex conjugate spin-space S′ = S along with their respective topological dual spaces S∗ and S′∗ can
be defined. The introduction of such dual spaces allow for the construction of spinor tensors of arbitrary
valence:

ΨA...BC′...D′

E...FG′...H′ ∈ S ⊗ · · · ⊗ S ⊗ S′ ⊗ · · · ⊗ S′ ⊗ S∗ ⊗ · · · ⊗ S∗ ⊗ S′∗ ⊗ · · · ⊗ S′∗

Similarly to vector fields on a manifold, a spinor field on a manifold M is defined to be a section of a
suitable vector bundle S over M. See [2] or recall that a vector bundle of rank r on a manifold M is the
triple (S,M, π) consisting of:

1. The total space S,

2. the base space M and

3. a continuous surjection π : S →M that is locally trivial of rank r.

A continuous surjection π : S →M is locally trivial of rank r if:

1. For each x ∈M the fibre π−1(x) has the structure of an r-dimensional vector space and

2. there is an open neighbourhood U of x and a fibre-preserving diffeomorphism:

φ : π−1(U)→ U × Rr

such that for every y ∈ U the restriction:

φ|π−1(y) : π−1(y)→ {y} × Rr

is a vector space isomorphism.

For any two maps π : S →M and π′ : S ′ →M the map φ : S → S ′ is said to be fibre-preserving if:

φ
(
π−1(x)

)
⊂ (π′)−1(x) ∀ x ∈M

The collection {(U, φ)}, with the sets U forming an open cover of M, is called a local trivialisation for S.
Given a vector bundle (S,M, π) of rank r and a pair (U, φU ) and (V, φV ) over which the bundle trivialises,
the composition function:

φ−1U ◦ φV : (U ∩ V )× Rr → (U ∩ V )× Rr

is well defined on the overlap and satisfies:

ϕ−1U ◦ φV (x, v) = (x, gUV (x)v)

for some GL(r)-valued function:

gUV : U ∩ V → GL(r)

The functions gUV are called transition functions of the vector bundle and correspond to coordinate trans-
formations on the vector bundle. A section of a vector bundle (S,M, π) is a map s :M→ S such that π ◦ s
is the identity map onM. A frame for a vector bundle (S,M, π) of rank r over an open set U is a collection
of sections s1, . . . , sr of S over U such that at each point x ∈ U the elements s1(x), . . . , sr(x) form a basis
for the fibre π−1(x). This definition of a frame actually corresponds to the physical notion of a frame of
reference, as discussed previously. A frame bundle of the vector bundle (S,M, π) is a disjoint union of frames
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over all ofM. Now to define the spinor bundle S, the manifoldM must be orientable, so that a global choice
of orientation is possible, and also time-orientable, so that a global choice of future-directed vectors can be
made. The orientability and time-orientability of M means that an orthonormal frame bundle B of M can
be reduced to an L↑+ bundle, that is, the transition matrices for B can be chosen to be in L↑+. Many objects
involving spinors are only defined up to sign, the kernel of the map SL(2,C) → L being a good example,

this leads after having reduced B to an L↑+ bundle, to find S as a double cover of B; for this to be possible,
M must satisfy a topological technicality which will be discussed shortly. Starting with orientability first,
consider a locally finite open cover {Ui}i∈I of M and a choice of orthonormal frame fi over Ui. On the
non-empty intersections Ui ∩ Uj the frames fi and fj will be related by a Lorentz transformation:

fjPijfi

The Lorentz transformations Pij define the orthonormal frame bundle B and must satisfy:

Pji = P−1ij

PijPkiPjk = I

providing:

Ui ∩ Uj ∩ Uk 6= 0

This is where sheaf cohomology comes in, so a few definitions are first in order. As a more general object to
the sheaf of holomorphic functions O, a sheaf S over a topological space M is a topological space together
with a mapping π : S →M such that:

1. π is a local homeomorphism,

2. the stalks π−1(x) are abelian groups and

3. the group operations are continuous.

It is important to note that the sections of S over an open subset of M form an abelian group S(U). Let
{Ui} be an open cover of M, then a p-cochain is a collection of sections:

si0...ip ∈ S

(
p⋂
k=1

Uik

)

that is, one for each non-empty p+ 1-fold intersection of the sets Ui, which are completely skew-symmetric:

si0...ip = s[i0...ip]

This p-cochain will be denoted as {si0...ip}. For example, a 1-cochain is a collection of sections:

sij ∈ S(Ui ∩ Uj)

such that:

sij = −sji

The set of all p-cochains has an abelian group structure, inherited from the sheaf, and is denoted by
Cp({Ui};S). The coboundary map:

δp : Cp({Ui};S)→ Cp+1({Ui};S)
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will now be defined. Given a 0-cochain si, a 1-cochain sij can be defined as follows:

sij = ρjsi − ρisj = 2ρ[jsi]

where ρisj is the restriction of sj to the set Ui ∩Uj . The coboundary map on C0({Ui};S) is then defined to
be:

δ0({si}) = {2ρ[jsi]}

with the general coboundary map being defined analogously:

δp({si0...ip}) = {(p+ 1)ρ[ip+1
si0...ip]}

It is easy to see that:

ker(δ0) = S

Moreover, there are special notations for the kernels and images of such coboundary maps, they are:

Zp({Ui};S) = ker(δp)

Bp({Ui};S) = im(δp−1)

with the elements of Zp({Ui};S) being called p-cocycles and the elements of Bp({Ui};S) being called p-
coboundaries. Zp({Ui};S) and Bp({Ui};S) are abelian groups and since:

δp+1 ◦ δp = 0

then Bp({Ui};S) will be a normal subgroup of Zp({Ui};S). The sheaf that is considered in the construction
of the vector bundle S is Z2. Recalling the Lorentz transformations Pij , define:

τij = det(Pij)

Then τij is an assignment of ±1 to every non-empty intersection Ui ∩Uj and is symmetric. Thus τij defines
a 1-cochain τ ∈ C1({Ui};Z2) and furthermore:

τijτkiτjk = 1

so that τ is actually a cocycle, that is, τ ∈ Z1({Ui};Z2). Now a change in the orientation of the fi corresponds
to a zero cochain ω ∈ C0({Ui};Z2) as so:

1. ωi = 1 if the orientation of fi is unchanged,

2. ωi = −1 if the orientation of fi is changed.

Such a change in orientation modifies the Pij and so will modify the τij according to:

τij → ωiτijωj

that is, τ changes by a coboundary. Using the cochain ω, the frames fi can be modified so that all the τij
become +1; this is fixing a choice of orientation. A similar argument allows M to oriented in time such
that the matrices Pij are all in L↑+. Now to construct the spin bundle S, a choice of matrix σij ∈ SL(2,C)
is needed where σij is one of the two inverse images of Pij , the other being −σij . These can evidently be
chosen to satisfy:

σji = σ−1ij
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but on the non-empty triple intersections:

σijσkiσjk = zijkI

where I is the 2 × 2 unit matrix and zijk = ±1. To be able to construct S, the σij needs to be chosen so
that all the zijk are +1. As like before, the zijk define a cochain but now in C2({Ui};Z2), which again is
actually a cocycle. A 1-cochain ωij can be defined by changing the choice of σij , that is, ωij = −1 if the
choice of −σij is taken and ωij = 1 if the choice of σij is taken. This changes zijk by a coboundary:

zijk → zijkτijτ
−1
ki τjk

and so the cocycle τij can then be used to change the signs of the σij so that they satisfy:

σij = σ−1ji

σijσkiσjk = I

and can be used to build the bundle S, up to a technicality. Let γ be a path in the fibre of the frame bundle
that is not homotopic to zero in that fibre. If γ is still not homotopic to zero when arbitrarily deformed in
the whole frame bundle, then S satisfies the technicality and will be the desired spinor bundle. Local sections
of S are the unprimed spinor fields πA(x). Note that, like before, the conjugate, dual and conjugate dual
bundles S ′, S∗ and S ′∗ respectively can also be constructed from S. Now that the appropriate machinery is
in place, the Levi-Civita connection ∇a of M can be extended uniquely to a connection ∇AA′ on the spin
bundles, further details on this can be found in [1]. Finally, a twistor is defined as a spinor field ΩA(x) in
Minkowski spacetime M satisfying the twistor equation:

∇A′ (AΩB) = 0

which is equivalent to the equation:

∇AA′ΩB = −iδ BA πA′

for some other spinor field πA′ and where δ BA is the identity spinor. Twistor space is then the four-dimensional
complex vector space of solutions to the twistor equation. The range of applications of twistors is enormous,
particularly in the field of mathematical physics. Indeed the whole machinery of differential geometry, the
bedrock of spacetime, can be completely reformulated in terms of spinor fields. One may think that stopping
at the definition of a twistor is of great injustice to such a magnificent field, and they would be right. Thus
the reader is referred to [1] and [3]-[7] to continue the journey.
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