Problem Set 2

Math 205B: Spring Quarter, 2018

1. (a) Suppose that $F: \mathbb{C}^{2} \rightarrow \mathbb{C}$ is a holomorphic function with the property that at least one of the partial derivatives $F_{z}(z, w), F_{w}(z, w)$ is always nonzero when $F(z, w)=0$. Define a complex structure on the curve $X=\left\{(z, w) \in \mathbb{C}^{2}: F(z, w)=0\right\}$ that makes it into a Riemann surface. Hint. Use the holomorphic form of the implicit function theorem.
(b) Show that the curve $w^{2}=\sin z$ is a Riemann surface.
2. Let $\hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ be the extended complex plane and

$$
\mathbb{S}^{2}=\left\{(x, y, t) \in \mathbb{R}^{3}: x^{2}+y^{2}+t^{2}=1\right\}
$$

the unit sphere. Define the bijection $\phi: \hat{\mathbb{C}} \rightarrow \mathbb{S}^{2}$ by

$$
\begin{aligned}
\phi(z) & =\left(\frac{2 x}{|z|^{2}+1}, \frac{2 y}{|z|^{2}+1}, \frac{|z|^{2}-1}{|z|^{2}+1}\right) \quad z=x+i y \in \mathbb{C}, \\
\phi(\infty) & =(0,0,1) .
\end{aligned}
$$

(a) Show that (up to a constant factor) the Euclidean metric on \mathbb{S}^{2} corresponds under ϕ to the spherical metric on $\widehat{\mathbb{C}}$, given by

$$
d(z, w)=\frac{|z-w|}{\sqrt{\left(|z|^{2}+1\right)\left(|w|^{2}+1\right)}},
$$

for $z, w \in \mathbb{C}$, with

$$
d(z, \infty)=\frac{1}{\sqrt{|z|^{2}+1}}, \quad d(\infty, \infty)=0 .
$$

(b) If $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is a linear fractional transformation

$$
f(z)=\frac{a z+b}{c z+d} \quad a d-b c=1,
$$

define $F: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ by $F=\phi \circ f \circ \phi^{-1}$. Show that F is a rotation of \mathbb{S}^{2} if and only if

$$
\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a & -\bar{c} \\
c & \bar{a}
\end{array}\right), \quad|a|^{2}+|c|^{2}=1
$$

(c) Deduce that $S O(3) \simeq S U(2) /\{I,-I\}$.

