Problem Set 5 Math 205B: Spring Quarter, 2018

1. Let $p: \mathcal{O} \to \mathbb{C}$ be the map $p: f_z \in \mathcal{O}_z \mapsto z$. Show that p is open and continuous. If

$$N(f,U) = \{ f_z \in \mathcal{O}_z : z \in U, (f,U) \in f_z \}$$

is an open set in \mathcal{O} defined by the function element (f, U), conclude that

$$p|_{N(f,U)}: N(f,U) \to U$$

is a homeomorphism, meaning that the Hausdorff topological space \mathcal{O} is a two-dimensional (disconnected, not first-countable) manifold.

2. Let $\gamma : [0,1] \to \mathbb{C}$ be a curve and $P : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ a polynomial. Suppose that $f_a, g_a \in \mathcal{O}_a$ are germs at $\gamma(0) = a$ that can be continued analytically along γ to give germs $f_{\gamma(t)}, g_{\gamma(t)} \in \mathcal{O}_{\gamma(t)}$ for $0 \leq t \leq 1$. If $P(f_a, g_a) = 0$, show that

$$P\left(f_{\gamma(t)}, g_{\gamma(t)}\right) = 0 \quad \text{for all } 0 \le t \le 1.$$

(This result is an example of *permanence of relations* under analytic continuation.)

3. Suppose that X is a Riemann surface and the continuous map $p: X' \to X$ is a covering of X. Show that there is a complex structure on X' such that $p: X' \to X$ is holomorphic.

4. (a) Define $d : \mathcal{O} \to \mathcal{O}$ by $f_a \mapsto df_a$ where $df_a = [(f', U)]$ if $f_a = [(f, U)]$. Show that d is a covering map.

(b) Let $\Omega \subset \mathbb{C}$ be a simply connected open set and $f : \Omega \to \mathbb{C}$ a holomorphic function. Show that f has a primitive $F : \Omega \to \mathbb{C}$ such that F' = f.

HINT. Lift f along curves in Ω with respect to d and use the monodromy theorem.