1. Plot the bifurcation diagram and representative phases lines for the scalar ODE
\[x_t = \mu x + x^3 - x^5. \]
Identify the bifurcation points and classify them. How would the system behave if \(\mu \) is increased quasi-statically from \(-\infty\) to \(+\infty\)? When is the equilibrium \(x = 0 \) linearly stable but unstable to sufficiently large perturbations?

2. Consider the scalar ODE
\[x_t = \lambda + \mu x - x^2, \]
where \(\lambda, \mu \in \mathbb{R} \) are parameters. Sketch the bifurcation diagram for the equilibria as a function of \(\mu \) for fixed \(\lambda \) in the cases \(\lambda < 0, \lambda = 0, \) and \(\lambda > 0. \) Identify the bifurcation points and classify them in each case.

3. Two rigid rods of length \(L \) are connected by a torsional spring with spring constant \(k \) and are subject to a compressive force of strength \(F. \) Explain why a reasonable model for the potential energy of the system is
\[V(x) = \frac{1}{2}kx^2 - 2FL(1 - \cos x), \]
where \(x \) is the angle of the rods to the horizontal. If the rod is strongly damped with damping constant \(\beta > 0, \) then the ODE for its motion is \(\beta x_t + V'(x) = 0. \) Show that a nondimensionalized form of the ODE is
\[x_t + x - \mu \sin x = 0, \quad \mu = \frac{2FL}{k}. \]
Sketch a bifurcation diagram for the ODE and classify the bifurcation that occurs.

4. Consider the system
\[x_t = 1 - x - \beta xy, \quad y_t = \beta xy - (1 + \gamma)y, \]
where \(\beta, \gamma > 0 \) are positive parameters. Sketch the bifurcation diagram for the equilibria as a function of \(\beta \) and show that a bifurcation occurs at some \(\beta = \beta_*(\gamma) \). What kind of bifurcation is it? Sketch typical phase planes on \(\mathbb{R}^2 \) (using numerical solutions if you prefer) for \(\beta \) close to \(\beta_* \) when \(\beta < \beta_*, \beta = \beta_*, \) and \(\beta > \beta_* \).