PROBLEM SET 1: SOLUTIONS
Math 207B, Winter 2016

1. Define f : R* — R by f(0,0) =0 and
xy? _

(a) Show that the directional derivatives of f at (0, 0) exist in every direction.
What is its Gateaux derivative at (0,0)?

(b) Show that f is not Fréchet differentiable at (0,0). (HINT. A Fréchet
differentiable function must be continuous.)

Solution.

e (a) The directional derivative of f at (0,0) in the direction (h,k) #
(0,0) is
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So all of the directional derivatives exist and df (0, 0; h, k) = 0.

e (b) If f:R™ — R is Fréchet differentiable at & € R”", then it follows
directly from the definition that f(Z + h) — f(Z) as h — 0, so [ is
continuous at .

e On the curve z = 3, y = t, we have f(t3,t) = 1/2 for t # 0, so
f(t3,t) A 0 ast — 0. It follows that f is not continuous at (0,0) and
therefore f is not Fréchet differentiable at (0, 0).



2. Define f,g: R?> — R by

flzy) =2>+y°, glz,y)=(y—1)°—2°

Find the minimum value of f(z,y) subject to the constraint g(z,y) = 0.
Show that there does not exist any constant A such that V f = AVg at some
point (z,y) € R%2. Why does the method of Lagrange multipliers fail in this
example?

Solution.

On the curve g(z,y) = 0, we have y = 1 +2%3 > 1, s0 f(z,y) > 1. On
the other hand, f(0,1) = 1 and ¢(0,1) = 0, so the minimum value of
f(z,y) is 1, attained at (x,y) = (0,1).

The Lagrange-multiplier-equations V f = AVg are
2r = =2\, 2y = 3A\(y — 1)%

The first equation is satisfied if either x = 0 and A is arbitrary, or
A= —1. If z = 0, then the constraint g(z,y) = 0 implies that y = 1,
in which case the second equation does not hold for any value of .

On the other hand, if A = —1, then 3y? — 4y + 3 = 0, which implies
that y = (2 £ v/—5)/3, so there are no real-valued solutions for y.

The Lagrange-multiplier method fails because Vg = 0 at the point
(x,y) = (0,1) where f attains its minimum on g = 0. As a result, the
curve g(z,y) = 0 is not smooth with a well-defined normal vector at
that point (see figure).




3. Derive the Euler-Lagrange equation for a functional of the form

What are the natural boundary conditions for this functional?

Solution.

e Computing the directional derivative of J at u in the direction ¢, and
using integration by parts, we get that
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o If u is a smooth extremal of J, then dJ(u;¢) = 0 for every ¢ €
C>([a,b]). In particular, if ¢ and its derivatives are zero at = = a, b,
then the boundary terms in the integration by parts vanish and
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for all ¢ € C2°(a,b). The fundamental lemma of the calculus of varia-
tions implies that u satisfies the Euler-Lagrange equation
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o [t follows that if ¢ € C2°([a, b]) is non-zero at z = a, b, then
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Choosing functions ¢ such that only one of ¢(a), ¢(b), ¢'(a), or ¢'(b)
is nonzero, we conclude that the natural boundary conditions for u at
r=a,b are

d

- d—Fu//(x,u,u',u") + Fy(z,u, v, u") =0, FEu(z,u,u,u")=0.
T

This gives four natural boundary conditions for the Euler-Lagrange
equation, which is a fourth-order ODE (provided that Fu,» # 0).



4. A curve y = u(z) with a < 2 < b, u(x) > 0, and u(a) = ug, u(b) = w
is rotated about the z-axis. Find the curve that minimizes the area of the
surface of revolution,

J(u) = / uy/1+ (v)?dw.

Solution.

e Since the Lagrangian F'(u,u’) = uy/1 + (u/)? is independent of z, the
Euler-Lagrange equation for J(u) has the first integral

—U'F,+F,=c

where ¢; is a constant of integration, which gives

u

— = .
1+ (u)?
e The solution for «' is
u2
Ul = ) 1,
1

and separation of variables gives

/#:/dﬂ

e Making the substitution u = ¢; cosht, where (cosht) = sinht¢ and
cosh?t — sinh?t = 1, we get that ¢t = z + ¢4, s0

u(z) = ¢1 cosh (£ + Cg) )

&1

e We choose the constants ¢q, ¢3 so that

a b
Uy = €1 cosh (— + 03) , 1y = ¢ cosh (— + 63) )
C1 &1

These algebraic equations might not have a solution for (ci,c3), in
which case there is no smooth curve that gives a minimal surface of
revolution with radius ug at + = a and radius u; at x = b.



e For example, consider the case when a = —b, with b > 0, and uy = u;.

Then ¢3 = 0 and
(<)
ug = ccosh [ — | .
c

Writing y = ug/c, t = b/e, and m = ug/b, we see that this equation
has a solution for c if

y = cosht, y = mit.

e The line y = mt is tangent to the curve y = cosht at t = ¢, when
m = myg (see figure), where

moto = cosh to, mgo = sinh to.

o If 0 < m < mgy, meaning that uy < mgb, then the line y = mt does not
intersect the curve y = cosht, and there are no solutions; if m > my,
meaning that ug > mgb, then the line y = mt intersects y = cosht in
two points, and there are two solutions.

e The critical value of m is given by my = sinhty, where t; > 0 is the
solution of ¢y tanh ¢ty = 1. The numerical solution of this transcendental
equation is ty ~ 1.1997, which gives mq ~ 1.5089.




5. Let X be the space of smooth functions u : [0, 1] — R such that «(0) = 0,
u(1) = 0. Define functionals J, K : X — R by

Tw) =3 /0 WPdr, K= % /0 2 de

(a) Introduce a Lagrange multiplier and write down the Euler-Lagrange equa-
tion for extremals in X of the functional J(u) subject to the constraint
K(u)=1.

(b) Solve the eigenvalue problem in (a) and find all of the extremals. Which
one minimizes J(u)?

Solution.

e (a) We have
6o 0K

ou ou

so the Lagrange-multiplier equation 0.J/du = MK /du is

u,

—u" = \u, uw(0) =0, wu(l)=0.

o If A\ = —k% <0, then the general solution of the ODE is
u(z) = ¢y coshz + cosinh .

The BC u(0) = 0 implies that ¢; = 0, and then the BC u(1) = 0 implies
that co = 0, so u = 0 and it does not satisfy the constraint K (u) = 1.

e If A\ =0, then u = ¢; + cox, and the BCs again imply that u = 0.
e If A =k? > 0, then the general solution of the ODE is
u(z) = ¢ cosx + cosin .

The BC u(0) = 0 implies that ¢; = 0, and then the BC wu(1) = 0 is
satisfied for co #£ 0 if sink = 0.

e Without loss of generality, we can take £k = nm with n = 1,2,3,...,
when u(x) = csin(nmz) and

\ = n?x2.



e The constraint K (u) = 1 is satisfied if

1

1
—02/ sin®(nmx) dr = 1,
2 Jo

or ¢?/4 =1, so the constrained extremals are u = +u,, where
uy(z) = 2sin(nmx), forn=1,2,3,...

e We have

1 !
J(up) = = | 4n*n? cos®*(nmx) dv = n*n°.
2Jo

The minimum of J is 72, attained at u;. For n > 2, the extremals u,,
are saddle points of J.



6. (a) Make a change of variable x = ¢(t), v(t) = u (¢(t)), where ¢'(t) > 0,
in the functional

b
J(u) = / F(x,u,u) dz.
Show that J(u) = K(v) where K (v) has the form

K(v) = /d G(t,v,v") dt

and express G in terms of F' and ¢.

(b) Show that the Euler-Lagrange equation for K (v) is the same as what you
get by changing variables in the Euler-Lagrange equation for J(u).

Solution.

e By the chain rule
V(1) = S ul6(0) = ¢ (' (911)).

e Making the change of variables © = ¢(t) in the integral for J(u), we
get

d
T = [ F (o), 0000/ 0)/6/0) o/t
where ¢ = ¢(a), d = ¢(b). It follows that
G(t,v,v") = ¢'(t)F (p(t),v,0' /P (1)) .

e The Euler-Lagrange equation for K (v) is

d
GG =0
T

From the previous expression for G, we have G, = F,, and G, = ¢'F,,,
so the Euler-Lagrange equation becomes

d
——F, "(t)F,, = 0.
pn + ¢'(1)

Since p iz d p
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it follows that p
——F,+F,=0,
dx +

which shows that the Euler-Lagrange equation for K(v) is equivalent
to the one for J(u).

Remark. The Euler-Lagrange equations are also invariant under more gen-
eral transformations of the independent and dependent variables. It is often
convenient to obtain equations that are invariant under some group of trans-
formations by deriving them from an invariant Lagrangian. For example,
in relativistic classical field theory, Lorentz-invariant Lagrangians lead to
Lorentz-invariant field equations.



