1. Consider the BVP

\[\varepsilon y'' + \sqrt{x} y' + y = 0, \quad 0 < x < 1 \]
\[y(0) = 2, \quad y(1) = 1 \]

where \(0 < \varepsilon \ll 1\). Where do you expect a boundary layer? Use a dominant balance argument to determine the appropriate inner variable, and find leading order inner, outer, and uniform asymptotic solutions as \(\varepsilon \to 0^+\). You can express your answer in terms of the constant

\[k = \int_0^\infty \exp \left(-\frac{2}{3} t^{3/2} \right) \, dt = \left(\frac{2}{3} \right)^{1/3} \Gamma \left(\frac{2}{3} \right). \]

Solution

- The coefficients of \(y''\) and \(y'\) have the same sign, corresponding to decay with increasing \(x\), so we expect that a boundary layer will occur at the left endpoint \(x = 0\).

- Introducing inner variables

\[Y(X; \varepsilon) = y(x; \varepsilon), \quad X = \frac{x}{\delta} \]

in the ODE, we get (remembering to change from \(x\) to \(X\) in the coefficient!)

\[\frac{\varepsilon}{\delta^2} Y'' + \frac{1}{\sqrt{\delta}} \sqrt{X} Y' + Y = 0, \]

where \(Y'\) denotes the derivative of \(Y\) with respect to \(X\). The first two terms balance if \(\varepsilon/\delta^2 = 1/\sqrt{\delta}\), or

\[\delta = \varepsilon^{2/3}. \]

We therefore expect a boundary layer at 0 whose thickness is of the order \(\varepsilon^{2/3}\). In that case, the inner equation becomes

\[Y'' + \sqrt{X} Y' + \varepsilon^{1/3} Y = 0 \]
• **Inner solution.** We expand

\[Y(X; \epsilon) = Y_0(X) + \epsilon^{1/3}Y_1(X) + O(\epsilon^{2/3}). \]

Then

\[Y_0'' + \sqrt{X}Y_0' = 0, \quad Y_0(0) = 2. \]

We impose only the BC at the left end-point on the inner solution. Solving this linear first order ODE for \(Y_0' \), we get

\[Y_0'(X) = C \exp \left(-\frac{2}{3} X^{3/2} \right), \]

where \(C \) is a constant of integration. It follows that

\[Y_0(X) = 2 + C \int_0^X \exp \left(-\frac{2}{3} t^{3/2} \right) dt. \]

• **Outer solution.** We expand

\[y(x; \epsilon) = y_0(x) + \epsilon^{1/3}y_1(x) + O(\epsilon^{2/3}). \]

Then, at leading order, we get

\[\sqrt{x}y_0' + y_0 = 0, \quad y_0(1) = 0. \]

We impose only the BC at the right end-point (without the boundary layer) on the outer solution. Solving this linear first-order IVP for \(y_0 \), we get

\[y_0(x) = \exp \left[2(1 - \sqrt{x}) \right] \]

• **Matching.** We impose the matching condition

\[\lim_{X \to +\infty} Y_0(X) = \lim_{x \to 0^+} y_0(x) \]

which gives

\[2 + kC = \epsilon^2 \]

or

\[C = \frac{\epsilon^2 - 2}{k}. \]

• The uniform asymptotic solution is

\[y \sim \exp \left[2(1 - \sqrt{x}) \right] + 2 + \left(\frac{\epsilon^2 - 2}{k} \right) \int_0^{x^{2/3}} \exp \left(-\frac{2}{3} t^{3/2} \right) dt - \epsilon^2. \]
2. Consider the BVP

\[\epsilon y'' + y' + y^3 = 0, \quad 0 < x < 1 \]
\[y(0) = 0, \quad y(1) = \frac{1}{2} \]

where \(0 < \epsilon \ll 1 \). Where do you expect a boundary layer? Find leading order inner, outer, and uniform asymptotic solutions as \(\epsilon \to 0^+ \). Would a similar solution work for the BCs \(y(0) = 0, y(1) = 1 \)?

Solution

- For \(\epsilon > 0 \), we expect the boundary layer at \(x = 0 \) since the coefficient of \(y' \) is positive.

- **Inner solution.** We let
 \[y(x; \epsilon) = Y(X; \epsilon), \quad X = \frac{x}{\epsilon} \]
 and expand
 \[Y(X; \epsilon) = Y_0(X) + \epsilon Y_1(X) + O(\epsilon^2). \]
 Then
 \[Y''_0 + Y'_0 = 0, \quad Y_0(0) = 0, \]
 which gives
 \[Y_0(X) = C \left(1 - e^{-X} \right). \]

- **Outer solution.** We expand
 \[y(x; \epsilon) = y_0(x) + \epsilon y_1(x) + O(\epsilon^2). \]
 Then, at leading order, we get
 \[y'_0 + y_0^3 = 0, \quad y_0(1) = \frac{1}{2}. \]
 The solution of the ODE is
 \[y_0(x) = \frac{1}{\sqrt{2x + A}} \]
 and the BC implies that
 \[A = 2. \]
• **Matching.** We impose the matching condition

\[
\lim_{X \to +\infty} Y_0(X) = \lim_{x \to 0^+} y_0(x)
\]

which gives

\[
C = \frac{1}{\sqrt{2}}
\]

• The uniform asymptotic solution is

\[
y \sim \frac{1}{\sqrt{2x + 2}} - \frac{1}{\sqrt{2}} \exp\left(-\frac{x}{\epsilon}\right).
\]

• If, instead, \(y(1) = 1\), then the outer solution is

\[
y_0(x) = \frac{1}{\sqrt{2x - 1}}.
\]

This solution blows up at \(x = 1/2\), so the asymptotic solution breaks down. Further analysis would be required to see if the BVP has a solution at all in this case.
3. Consider the BVP
\[\epsilon y'' - \frac{y'}{1 + 2x} - \frac{1}{y} = 0, \quad 0 < x < 1 \]
\[y(0) = 3, \quad y(1) = 3 \]
where \(0 < \epsilon \ll 1 \). Where do you expect a boundary layer? Find leading order inner, outer, and uniform asymptotic solutions as \(\epsilon \to 0^+ \).

Solution

- We expect the boundary layer at the right end-point \(x = 1 \) since the coefficient of \(y' \) is negative.

- **Inner solution.** We let
 \[y(x; \epsilon) = Y(X; \epsilon), \quad X = \frac{1 - x}{\epsilon} \]
 and expand
 \[Y(X; \epsilon) = Y_0(X) + \epsilon Y_1(X) + O(\epsilon^2). \]
 Note that \(X = 0 \) corresponds to \(x = 1 \),
 \[\frac{d}{dx} = -\frac{1}{\epsilon} \frac{d}{dX}, \]
 and \(x = 1 + O(\epsilon) \) in the coefficient. Therefore, at leading order, we get
 \[Y_0'' + \frac{1}{3} Y'_0 = 0, \quad Y_0(0) = 3. \]
 The solution is
 \[Y_0(X) = 3 + C \left(1 - e^{-X/3}\right) \]
 where \(C \) is a constant of integration.

- **Outer solution.** We expand
 \[y(x; \epsilon) = y_0(x) + \epsilon y_1(x) + O(\epsilon^2). \]
 Then, at leading order, we get
 \[\frac{y_0'}{1 + 2x} + \frac{1}{y_0} = 0 = 0, \quad y_0(0) = 3. \]
The solution of this first-order nonlinear ODE (by separation of variables) is

$$y_0(x) = \sqrt{A - 2(x + x^2)},$$

and the BC implies that

$$A = 9.$$

The outer solution is well-defined and nonzero in $0 \leq x \leq 1$.

- **Matching.** We impose the matching condition

$$\lim_{X \to +\infty} Y_0(X) = \lim_{x \to 1^-} y_0(x)$$

which gives

$$C = \sqrt{5} - 3$$

- The uniform asymptotic solution is

$$y \sim \sqrt{9 - 2(x + x^2)} + \left(3 - \sqrt{5}\right) \left\{1 - \exp\left[-\left(1 - \frac{x}{3\epsilon}\right)\right]\right\}.$$