PROBLEM SET 3 Math 218B, Winter 2010

1. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set, and denote by $\{w_k : k \in \mathbb{N}\}$ an L^2 -orthonormal set of eigenfunctions of the Dirichlet Laplacian on Ω , where

$$-\Delta w_k = \lambda_k w_k, \qquad w_k \in H^1_0(\Omega)$$

and $\lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots$. Suppose that $\lambda \in \mathbb{R}$, $g \in L^2(\Omega)$ and $f \in H^{-1}(\Omega)$. (a) Find an explicit expression for the weak solution

$$u \in L^2_{\text{loc}}\left(0,\infty; H^1_0(\Omega)\right) \cap C\left(0,\infty; L^2(\Omega)\right)$$

of the IBVP

$$u_t = \Delta u + \lambda u + f(x),$$

 $u(x,0) = g(x), \qquad u = 0 \quad \text{on } \partial \Omega$

in terms of the eigenfunctions w_k .

(b) If $\lambda < \lambda_1$, show that the solution u(t) converges as $t \to \infty$ to the solution \bar{u} of the time-independent equation, and estimate the rate at which $||u(t) - \bar{u}||$ approaches zero in a suitable norm.

2. Let Ω be a bounded open set in \mathbb{R}^n . Give a weak formulation for the following IBVP for a fourth-order parabolic PDE for u(x,t):

$$u_t = -\Delta^2 u + f(x,t) \qquad x \in \Omega \text{ and } 0 < t < T,$$

$$u = 0, \quad Du \cdot \nu = 0 \qquad \text{on } \partial\Omega \text{ and } 0 < t < T,$$

$$u(x,0) = g(x) \qquad x \in \Omega \text{ and } t = 0,$$

and show that there is a unique weak solution.

3. (a) Let $\Omega \subset \mathbb{R}^n$ be a bounded open set and T > 0. Consider the semilinear IBVP

$$u_t = \Delta u - u^{2p-1}, \qquad u(x,0) = g(x), \qquad u = 0 \quad \text{on } \partial\Omega,$$

where $g \in L^2(\Omega)$ and $p \in \mathbb{N}$. Use a Galerkin method to prove that there exists a unique weak solution

$$u \in L^{2}(0,T; H^{1}_{0}(\Omega)) \cap L^{2p}(0,T; L^{2p}(\Omega))$$

with $u \in C([0,T]; L^2(\Omega))$.

(b) Show that, in general, global in time smooth solutions do not exist for the IBVP on 0 < x < 1

$$u_t = u_{xx} + u^3$$
, $u(x, 0) = g(x)$, $u = 0$ at $x = 0, 1$.

HINT. See §6.6 of the notes for help on (a). For(b), consider the first Fourier sine coefficient $c(t) = \int_0^1 \sin(\pi x) u(x, t) dx$.