1. Compute the derivatives of the following functions. You do not need to simplify your answers.

(a) \(\frac{2x + 5}{\sqrt{x^4 + 3}} \)

(b) \(e^{3x+1} \ln(x^2 + 1) \)

(c) \(\tan(cos x + \sin x) \)

(d) \(\sin^{-1} \left(\sqrt{2x} \right) \)

Solution.

• (a)

\[
\frac{d}{dx} \frac{2x + 5}{\sqrt{x^4 + 3}} = \frac{2 \cdot \frac{\sqrt{x^4 + 3} - \frac{1}{2\sqrt{x^4 + 3}} \cdot 4x^3 \cdot (2x + 5)}{x^4 + 3}}
\]

• (b)

\[
\frac{d}{dx} e^{3x+1} \ln(x^2 + 1) = e^{3x+1} \cdot 3 \cdot \ln(x^2 + 1) + e^{3x+1} \cdot \frac{1}{x^2 + 1} \cdot 2x
\]

• (c)

\[
\frac{d}{dx} \tan(cos x + \sin x) = \sec^2(cos x + \sin x) \cdot (- \sin x + \cos x)
\]

• (d)

\[
\frac{d}{dx} \sin^{-1} \left(\sqrt{2x} \right) = \frac{1}{\sqrt{1 - 2x}} \cdot \frac{1}{2\sqrt{2x}} \cdot 2
\]
2. Evaluate the following limits or say if they do not exist (using any method you want):

(a) \[\lim_{x \to 0} \frac{1 - \cos(2x)}{xe^x - x} \]

(b) \[\lim_{x \to 0} \left\{ \sin x \left[\frac{1}{x} - \frac{1}{\sin(2x)} \right] \right\} \]

(c) \[\lim_{x \to \infty} \left(\ln x e^{-x} \right) \]

(d) \[\lim_{x \to 1} \frac{\sin x}{x} \]

Solution.

• (a) This is an indeterminate limit \((0/0)\), and applying l'Hôpital's rule twice, we get

\[\lim_{x \to 0} \frac{1 - \cos(2x)}{xe^x - x} = \lim_{x \to 0} \frac{2 \sin(2x)}{xe^x + e^x - 1} = \lim_{x \to 0} \frac{4 \cos(2x)}{xe^x + 2e^x} = 2. \]

• (b) Using \(\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1\), we get

\[\lim_{x \to 0} \left\{ \sin x \left[\frac{1}{x} - \frac{1}{\sin(2x)} \right] \right\} = \lim_{x \to 0} \left\{ \frac{\sin x}{x} - \frac{\sin x}{x} \cdot \frac{2x}{\sin(2x)} \cdot \frac{1}{2} \right\} = 1 - 1 \cdot 1 \cdot \frac{1}{2} = \frac{1}{2}. \]

• (c) Since \(\ln x \to \infty\) and \(e^x \to \infty\) as \(x \to \infty\), we can apply l'Hôpital's rule to get

\[\lim_{x \to \infty} \left(\ln x e^{-x} \right) = \lim_{x \to \infty} \frac{\ln x}{e^x} = \lim_{x \to \infty} \frac{1}{e^x} = 0. \]

• (d) By the continuity of \(\sin x\),

\[\lim_{x \to 1} \frac{\sin x}{x} = \sin 1. \]
3. A 15 ft ladder is leaning against a wall. If the base of the ladder is pushed toward the wall at a speed of 2 ft/sec, at what speed is the top of the ladder moving up the wall when the base of the ladder is 6 ft from the wall?

Solution.

- Let $y(t)$ be the height of the top of the ladder and $x(t)$ the distance of the base of the ladder from the wall at time t. Then, by the Pythagorean theorem,
 \[x^2 + y^2 = 15^2. \]
 If $x = 6$, then $y = \sqrt{15^2 - 6^2} = 3\sqrt{21}$.

- Differentiation with respect to t gives
 \[2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0, \]
 so
 \[\frac{dy}{dt} = -\frac{x}{y} \frac{dx}{dt}. \]

- When $x = 6, y = 3\sqrt{21}$, and $dx/dt = -2$, we get
 \[\frac{dy}{dt} = \frac{4}{\sqrt{21}} \text{ ft/sec}. \]
4. A pile of sand in the shape of a cone whose radius is twice its height is growing at a rate of 5 cubic meters per second. How fast is its height increasing when the radius is 20 meters? Hint. The volume of a cone of radius \(r \) and height \(h \) is \(V = \frac{1}{3} \pi r^2 h \).

Solution.

- If \(r = 2h \), then
 \[V = \frac{4}{3} \pi h^3. \]

- Differentiation with respect to time \(t \) gives
 \[\frac{dV}{dt} = 4\pi h^2 \frac{dh}{dt}. \]

- When \(r = 20 \), \(h = 10 \), and \(dV/dt = 5 \), we get
 \[\frac{dh}{dt} = \frac{1}{80\pi} \text{ meters/second}. \]
5. State the natural domain of the function

\[y = \frac{\ln x}{x^2}. \]

Sketch the graph, identify where the graph is increasing/decreasing, the local extrema, where the graph is concave up/concave down, and the inflection points.

Solution.

- The domain is \((0, \infty)\), where \(x > 0\).
- We have
 \[y' = \frac{1 - 2 \ln x}{x^3}. \]
- Increasing \((y' > 0)\) for \(\ln x < 1/2\) or \(0 < x < \sqrt{e}\).
- Decreasing \((y' < 0)\) for \(\ln x > 1/2\) or \(x > \sqrt{e}\).
- Global maximum at \((x, y) = (\sqrt{e}, 1/2e)\).
- We have
 \[y'' = \frac{6 \ln x - 5}{x^6}. \]
- Concave up \((y'' > 0)\) for \(\ln x > 5/6\) or \(x > e^{5/6}\).
- Concave down \((y'' < 0)\) for \(\ln x < 5/6\) or \(0 < x < e^{5/6}\).
- Inflection point at \((x, y) = (e^{5/6}, (5/6)e^{-5/3})\).
- The graph is on the next page \((\sqrt{e} \approx 1.65, e^{5/6} \approx 2.30)\).
6. A cricket ball is projected directly upward from the ground with an initial velocity of 112 ft/s. Assuming that the acceleration due to gravity is 32 ft/sec², derive an equation for the height \(s(t) \) of the ball above the ground after \(t \) seconds. When does the ball hit the ground?

Solution.

- Measuring height upwards, the acceleration of the ball is given by
 \[
 \frac{d^2s}{dt^2} = -32.
 \]
- It follows that
 \[
 \frac{ds}{dt} = -32t + v_0
 \]
 where \(v_0 \) is a constant.
- At \(t = 0 \), the velocity \(ds/dt \) is 112, so \(v_0 = 112 \).
- It also follows that
 \[
 s = -16t^2 + v_0t + s_0
 \]
 where \(s_0 \) is a constant.
- At \(t = 0 \) the height of the ball is 0, so \(s_0 = 0 \) and
 \[
 s(t) = -16t^2 + 112t.
 \]
- Since \(s = 16t(7 - t) \), the ball hits the ground (\(s = 0 \)) after 7 seconds.
7. A one meter high fence is eight meters in front of a high wall. Find the minimum length of a ladder resting on the fence whose foot is in front of the fence and whose top reaches the wall.

Solution.

- Let \(y \) be the height of the top of the ladder at the wall, \(x \) the distance of the foot of the ladder from the wall, and \(a \) the distance of the foot of the ladder from the fence. Then \(x = 8 + a \) and, by similar triangles, \(y/x = 1/a \), so
 \[
 y = \frac{x}{x-8}.
 \]

- Minimizing the length \(L \) of the ladder is the same as minimizing the square \(S = L^2 \) of the length, which is
 \[
 S = x^2 + y^2.
 \]

- It follows that we want to find the global minimum of
 \[
 S(x) = x^2 + \left(\frac{x}{x-8} \right)^2 \quad \text{on } 8 \leq x < \infty.
 \]

- We compute that
 \[
 S'(x) = 2x + 2 \left(\frac{x}{x-8} \right) \left[\frac{(x-8) - x}{(x-8)^2} \right]
 = 2x - \frac{16x}{(x-8)^3}
 = \frac{2x[(x-8)^3 - 8]}{(x-8)^3}
 \]

- There is one critical point with \(S'(x) = 0 \) and \(x > 8 \) when \((x-8)^3 = 8 \) or \(x = 10 \). Moreover, \(S'(x) < 0 \) if \(8 \leq x < 10 \), so \(S(x) \) is decreasing, and \(S'(x) > 0 \) if \(x > 10 \), so \(S(x) \) is increasing. It follows that \(S(x) \) has a global minimum at \(x = 10 \).

- At \(x = 10 \), we have \(y = 5 \) and \(S = 125 \). The minimum length \(\sqrt{S} \) of the ladder is therefore \(5\sqrt{5} \) meters.
8. Define a function $f(x)$ with domain $(-\infty, \infty)$ by

$$f(x) = \begin{cases}
x^2 & \text{if } x \leq 1 \\
Ax + B & \text{if } 1 < x < 2 \\
-2x^2 & \text{if } x \geq 2.
\end{cases}$$

(a) Determine the constants A and B so that $f(x)$ is continuous everywhere.

(b) Is this function differentiable everywhere?

(c) Sketch the graph $y = f(x)$ in that case and determine the range of f.

Solution.

- (a) To get continuity, we need $Ax + B = x^2$ at $x = 1$ and $Ax + B = -2x^2$ at $x = 2$, or

$$A + B = 1, \quad 2A + B = -8.$$

The solution of these equations is

$$A = -9, \quad B = 10.$$

- (b) The function is not differentiable at $x = 1$ or $x = 2$ since the left and right derivatives are different: $f'(1^+) = -9$, $f'(1^-) = 2$, $f'(2^+) = -8$, $f'(2^-) = -9$.

- (c) The range of f is $(-\infty, \infty)$. The graph is omitted.
9. Find the equation of the tangent line to the curve

\[(x - y)^3 = x^2 - y^2 - 2\]

at the point (2, 1). At which point does this tangent line cross the x-axis and at what angle?

Solution.

- Implicit differentiation gives

 \[3(x - y)^2 \left(1 - \frac{dy}{dx}\right) = 2x - 2y \frac{dy}{dx}.\]

- At the point (2, 1) we get that

 \[\frac{dy}{dx} = -1.\]

- The equation of the tangent line is \[y - 2 = -(x - 1)\] or

 \[y = 3 - x.\]

- The tangent line crosses the x-axis at \((x, y) = (3, 0)\). It has slope -1, so the angle is \(3\pi/4\).