Calculus: Midterm 1
Math 21C, Spring 2018
Solutions

1. [20pts] Do the following sequences {a,} converge or diverge as n — oo?
If a sequence converges, find its limit. Justify your answers.

Solution.

e (a) We have
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e (b) Since cosz is a continuous function, we have
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e (c) The sequence diverges since its terms oscillate between 0 (for n odd)
and 2 (for n even).

e (d) We have

1-2-3...n
a, =
_1 2 3 n
“non on n
1
<.
n

Since 0 < a, < 1/n and 1/n — 0, we have a,, — 0 by the sandwich
theorem.



2. [10pts] Find the sums of the following series.
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Solution.
e (a) This is a geometric series with ratio r = —2/3. Since |r| < 1, the

series converges and the sum is
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e (b) This is a telescoping series of the form
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The partial sums are given by
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We have n/(n+1) — 1 as n — 00, so
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3. [30pts] Determine whether the following series converge absolutely, con-
verge conditionally, or diverge. You can use any appropriate test provided
that you explain your answer.
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Solution.
e (a) Let
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so the series > a,, diverges by the ratio test.
e (b) Let
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Since lim /a,, < 1, the series converges by the root test.



e (c) The limit of the terms is
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Since this limit is nonzero, the series diverges by the nth-term test.
e (d) We have Inn > 1 for n > 3, so
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Since the p-series with p = 1/2 < 1 diverges, the comparison test
implies that that the series Y Inn/y/n diverges.
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e (e) Let
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Since Y b, is a convergent p-series with p = 5/2 > 1, the series > a,
converges absolutely by the limit comparison test.

e (f) The series is of the form > (—1)""lu,, where

1
Uy = —————
n?+5

is a positive, decreasing sequence with limit zero, so the alternating
series test implies that the series converges. However, since
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the limit comparison test with the divergent harmonic series > 1/n
shows that the series Y 1/v/n? + 5 diverges, so the original series con-
verges conditionally.



4. [10pts] Use the integral test to show that the series

oo

.2
E ne "
n=1

converges, and show that its sum is less than 1/2.

Solution.

e Let f(z) = ze™™, so the nth term in the series is f(n). Then f(z) is a
continuous, positive function for x > 1, and

f(z) = (1-22?%) e <0 forz>1/V2,

so f(z) is a decreasing for x > 1. Making the substitution u = z?, we
get that
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so the integral converges and the integral test implies that the series
converges.

e By considering lower Riemann sums, we see that
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Since e =3 1/nl > 1+1+1/2! =5/2, we have
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so the sum of the series is less than 1/2.
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Remark. The last part of this problem was more complicated than intended.
It would be much easier to estimate the sum of the series starting from n = 2:
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