Solutions: Midterm 2
 Math 21C, Spring 2018

1. [20\%] Determine the interval of convergence (including the endpoints) for the following power series. State explicitly for what values of x the series converges absolutely, converges conditionally, or diverges. Give the radius of convergence R and the center of the interval of convergence a.

$$
\sum_{n=0}^{\infty} \frac{(-3)^{n} x^{n}}{n^{2}+1}
$$

Solution.

- Let

$$
a_{n}=\frac{(-3)^{n} x^{n}}{n^{2}+1}
$$

- Then

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right| & =\frac{3^{n+1}|x|^{n+1}}{(n+1)^{2}+1} \cdot \frac{n^{2}+1}{3^{n}|x|^{n}} \\
& =3|x| \cdot \frac{n^{2}+1}{(n+1)^{2}+1} \\
& =3|x| \cdot \frac{1+1 / n^{2}}{(1+1 / n)^{2}+1 / n^{2}} \\
& \rightarrow 3|x| \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

- The ratio test implies that the series $\sum a_{n}$ converges absolutely if $3|x|<$ 1 and diverges if $3|x|>1$. The center of the interval of convergence is $a=0$ and the radius of convergence is $R=1 / 3$.
- At $x= \pm 1 / 3$, we have

$$
\left|a_{n}\right|=\frac{1}{n^{2}+1} \leq \frac{1}{n^{2}} \quad \text { for } n \geq 1
$$

so the series converges absolutely at $x= \pm 1 / 3$ by comparison with the convergent p-series with $p=2$. The interval of convergence is $-1 / 3 \leq x \leq 1 / 3$.
2. [20\%] Let

$$
\vec{u}=2 \vec{i}-\vec{j}+\vec{k}, \quad \vec{v}=4 \vec{i}+3 \vec{k}
$$

(a) Compute $\vec{u} \cdot \vec{v}$.
(b) Compute $\vec{u} \times \vec{v}$.
(c) Find the angle θ between \vec{u} and \vec{v}.

Solution.

- (a) We have

$$
\vec{u} \cdot \vec{v}=2 \cdot 4-1 \cdot 0+1 \cdot 3=11 .
$$

- (b) We have

$$
\begin{aligned}
\vec{u} \times \vec{v} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & -1 & 1 \\
4 & 0 & 3
\end{array}\right| \\
& =\left|\begin{array}{cc}
-1 & 1 \\
0 & 3
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
2 & 1 \\
4 & 3
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
2 & -1 \\
4 & 0
\end{array}\right| \vec{k} \\
& =-3 \vec{i}-2 \vec{j}+4 \vec{k}
\end{aligned}
$$

(c) We have

$$
\begin{aligned}
& |\vec{u}|^{2}=2^{2}+(-1)^{2}+1^{2}=6, \\
& |\vec{v}|^{2}=4^{2}+0^{2}+3^{2}=25,
\end{aligned}
$$

so $|\vec{u}|=\sqrt{6},|\vec{v}|=5$, and

$$
\cos \theta=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}=\frac{11}{5 \sqrt{6}}, \quad \theta=\cos ^{-1}\left(\frac{11}{5 \sqrt{6}}\right) .
$$

3. [20\%] Suppose that L_{1}, L_{2} are lines with the parametric equations

$$
\begin{array}{ll}
L_{1}: & x=4+2 t, y=1+t, z=2+t \\
L_{2}: & x=4+t, \quad y=1-t, z=2+3 t
\end{array}
$$

Find an equation for the plane that contains L_{1} and L_{2}.

Solution.

- The lines intersect at the point $P_{0}(4,1,2)$, so they are contained in the plane through P_{0} whose normal vector \vec{n} is orthogonal to the direction vectors of both lines.
- The direction vectors of L_{1}, L_{2} are

$$
\vec{v}_{1}=2 \vec{i}+\vec{j}+\vec{k}, \quad \vec{v}_{2}=\vec{i}-\vec{j}+3 \vec{k},
$$

so a normal vector to the plane is

$$
\begin{aligned}
\vec{n} & =\vec{v}_{1} \times \vec{v}_{2} \\
& =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
2 & 1 & 1 \\
1 & -1 & 3
\end{array}\right| \\
& =4 \vec{i}-5 \vec{j}-3 \vec{k}
\end{aligned}
$$

- The equation of the plane is $\vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0$, or

$$
4(x-4)-5(y-1)-3(z-2)=0
$$

which gives

$$
4 x-5 y-3 z=5
$$

4. [20\%] Let

$$
f(x, y)=\sin (x+2 y)+x^{3} y .
$$

Compute the partial derivatives $f_{x}, f_{y}, f_{x x}, f_{x y}, f_{y y}$.

Solution.

- We have

$$
\begin{aligned}
f_{x} & =\cos (x+2 y)+3 x^{2} y \\
f_{y} & =2 \cos (x+2 y)+x^{3} \\
f_{x x} & =-\sin (x+2 y)+6 x y \\
f_{x y} & =-2 \sin (x+2 y)+3 x^{2} \\
f_{y y} & =-4 \sin (x+2 y)
\end{aligned}
$$

5. [20\%] (a) Find the Taylor polynomial $P_{2}(x)$ of order 2 at $x=0$ for the function $f(x)=x e^{-x}$.
(b) Write down an expression for the remainder $R_{2}(x)$ and use it to find an estimate for the maximum error between $f(x)$ and $P_{2}(x)$ when $x=0.1$.

Solution.

- (a) We have

$$
f^{\prime}(x)=(1-x) e^{-x}, \quad f^{\prime \prime}(x)=(x-2) e^{-x}, \quad f^{\prime \prime \prime}(x)=(3-x) e^{-x} .
$$

The first three Taylor coefficients of $f(x)$ at $x=0$ are

$$
c_{0}=f(0)=0, \quad c_{1}=f^{\prime}(0)=1, \quad c_{2}=\frac{f^{\prime \prime}(0)}{2!}=-1,
$$

so

$$
P_{2}(x)=x-x^{2} .
$$

- Alternatively, since $e^{-x}=1-x+\ldots$, we have $x e^{-x}=x-x^{2}+\ldots$.
- (b) The remainder is given by

$$
R_{2}(x)=\frac{f^{\prime \prime \prime}(c)}{3!} x^{3}, \quad f^{\prime \prime \prime}(c)=(3-c) e^{-c} .
$$

for some $0<c<x$. Both factors $(3-c)$ and e^{-c} are positive and decreasing for $0<c<3$, so $f^{\prime \prime \prime}(c)$ attains its maximum value on $0 \leq c \leq 3$ at the left endpoint $c=0$, meaning that $0 \leq f^{\prime \prime \prime}(c) \leq 3$.

- It follows that

$$
0 \leq f(0.1)-P_{2}(0.1) \leq \frac{1}{2}(0.1)^{3}
$$

