Calculus: Math 21C, Spring 2018

Sample Final Questions

1. Do the following sequences $\left\{a_{n}\right\}$ converge or diverge as $n \rightarrow \infty$? If a sequence converges, find its limit. Justify your answers.
(a) $\quad a_{n}=\frac{2 n^{2}+3 n^{3}}{2 n^{3}+3 n^{2}} ;$
(b) $a_{n}=\frac{\sin \left(n^{2}\right)}{\sqrt{n}}$;
(c) $\quad a_{n}=\frac{n}{\ln n}$.
2. Do the following series converge or diverge? State clearly which test you use.
(a) $\sum_{n=1}^{\infty} \frac{n+4}{6 n-17}$
(b) $\sum_{n=1}^{\infty} \sqrt{\frac{n}{n^{4}+7}}$
(c) $\sum_{n=1}^{\infty} \frac{(-5)^{n+1}}{(2 n)!}$
(d) $\sum_{n=2}^{\infty}(-1)^{n} \frac{\ln n}{n}$
(e) $\frac{1}{1^{4}}+\frac{1}{2^{4}}-\frac{1}{3^{4}}+\frac{1}{4^{4}}+\frac{1}{5^{4}}-\frac{1}{6^{4}}+\frac{1}{7^{4}}-\frac{1}{9^{4}}+\cdots$
(f) $\sum_{n=1}^{\infty}\left(e^{n}-e^{n+1}\right)$
3. Determine the interval of convergence (including the endpoints) for the following power series. State explicitly for what values of x the series converges absolutely, converges conditionally, and diverges. Specify the radius of convergence R and the center of the interval of convergence a.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} 2^{n}}{n}(x-1)^{n}
$$

4. Write the Taylor polynomial $P_{2}(x)$ at $x=0$ of order 2 for the function

$$
f(x)=\ln (1+x)
$$

Use Taylor's theorem with remainder to give a numerical estimate of the maximum error in approximating $\ln (1.1)$ by $P_{2}(0.1)$.
5. (a) Find the value(s) of c for which the vectors

$$
\vec{u}=c \vec{i}+\vec{j}+c \vec{k}, \quad \vec{v}=2 \vec{i}-3 \vec{j}+c \vec{k} .
$$

are orthogonal.
(b) Find the value(s) of c for which the vectors

$$
\vec{u}=c \vec{i}+\vec{j}+c \vec{k}, \quad \vec{v}=2 \vec{i}-3 \vec{j}+c \vec{k}, \quad \vec{w}=\vec{i}+6 \vec{k}
$$

lie in the same plane.
6. Find an equation for the plane that is orthogonal to the curve

$$
\vec{r}(t)=t^{2} \vec{i}+(2 t-1) \vec{j}+t^{3} \vec{k}
$$

at the point $(1,1,1)$.
7. Suppose that

$$
f(x, y)=e^{x} \cos \pi y
$$

and $x=u^{2}-v^{2}, y=u^{2}+v^{2}$. Use the chain rule to compute the values of

$$
\frac{\partial f}{\partial u}, \quad \frac{\partial f}{\partial v}
$$

at the point $(u, v)=(1,1)$.
8. Let

$$
f(x, y, z)=\ln \left(x^{2}+y^{2}-1\right)+y+6 z
$$

In what direction \vec{u} is $f(x, y, z)$ increasing most rapidly at the point $(1,1,0)$? Give your answer as a unit vector \vec{u}. What is the directional derivative of f in the direction \vec{u} ?
9. Find a parametric equation for the line that is orthogonal to the surface $x y z=2$ at the point $(1,1,2)$.
10. Find all critical points of the function

$$
f(x, y)=x^{4}-8 x^{2}+3 y^{2}-6 y
$$

and classify them as maximums, minimums, or saddle-points.
11. Let

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

be the unit disc and

$$
f(x, y)=x^{2}-2 x+y^{2}+2 y+1
$$

Find the global maximum and minimum values of

$$
f: D \rightarrow \mathbb{R}
$$

At what points (x, y) in D does f attain its maximum and minimum?
12. Suppose that the material for the top and bottom of a rectangular box costs a dollars per square meter and the material for the four sides costs b dollars per square meter. Use the method of Lagrange multipliers to find the dimensions of a box of volume V cubic meters that minimizes the cost of the materials used to construct it. What is the minimal cost?

