
Calculus: Math 21C, Spring 2018
Sample Final Questions: Solutions

1. Do the following sequences {an} converge or diverge as n → ∞? If a
sequence converges, find its limit. Justify your answers.

(a) an =
2n2 + 3n3

2n3 + 3n2
; (b) an =

sin(n2)√
n

; (c) an =
n

lnn
.

Solution.

• (a) Dividing the numerator and denominator by n3, we have

an =
2/n+ 3

2 + 3/n
→ 3

2
as n→∞

so the sequence converges to 3/2.

• (b) Since | sinx| ≤ 1, we have

|an| ≤
1√
n
,

and 1/
√
n → 0 as n → ∞, so the sequence converges to 0 by the

sandwich theorem.

• (c) Since both numerator and denominator diverge to infinity, we can
apply l’Hôspital’s rule to get that

lim
n→∞

n

lnn
= lim

x→∞

x

lnx
= lim

x→∞

1

1/x
= lim

x→∞
x =∞,

so the sequence diverges to infinity.
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2. Do the following series converge or diverge? State clearly which test you
use.

(a)
∞∑
n=1

n+ 4

6n− 17

(b)
∞∑
n=1

√
n

n4 + 7

(c)
∞∑
n=1

(−5)n+1

(2n)!

(d)
∞∑
n=2

(−1)n
lnn

n

(e)
1

14
+

1

24
− 1

34
+

1

44
+

1

54
− 1

64
+

1

74
− 1

94
+ · · ·

(f)
∞∑
n=1

[
en − en+1

]

Solution.

• We write each series as
∑
cn.

• (a) We have

lim
n→∞

cn = lim
n→∞

n+ 4

6n− 17
=

1

6
.

Since this limit is nonzero, the series diverges by the nth term test.

• (b) We have

0 ≤ cn =

√
n

n4 + 7
≤
√

n

n4
=

1

n3/2
.

Therefore the series converges by the comparison test, since the p-series
with p = 3/2 > 1 converges.

2



• (c) We have ∣∣∣∣cn+1

cn

∣∣∣∣ =

∣∣∣∣(−5)n+2/(2n+ 2)!

(−5)n+1/(2n)!

∣∣∣∣
=

5(2n)!

(2n+ 2)!

=
5

(2n+ 1)(2n+ 2)
.

It follows that

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ = 0.

Since this limit exists and is less than 1, the series converges absolutely
by the ratio test, and therefore it converges.

• (d) For x ≥ 3, we have ln x > 1, and

d

dx

(
lnx

x

)
=

1− lnx

x2
< 0,

so lnn/n is decreasing for n ≥ 3, and lnn/n → 0 as n → ∞ by
l’Hôspital’s rule. Hence, the series converges by the alternating series
test.

• (e) We have

|cn| =
1

n4

so the series converges absolutely, since the p-series with p = 4 con-
verges. Therefore the series converges since any absolutely convergent
series is convergent.

• (f) Either note that

cn = en − en+1 = en (1− e)

diverges to −∞ as n→∞, so the series diverges by the nth term test.
Or note that the series is a telescoping series of the form cn = bn− bn+1

with bn = en and the limit of bn as n→∞ does not exist, so the series
is a divergent telescoping series.
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3. Determine the interval of convergence (including the endpoints) for the
following power series. State explicitly for what values of x the series con-
verges absolutely, converges conditionally, and diverges. Specify the radius
of convergence R and the center of the interval of convergence a.

∞∑
n=1

(−1)n2n

n
(x− 1)n.

Solution.

• Applying the ratio test, we have

lim
n→∞

∣∣∣∣(−1)n+12n+1(x− 1)n+1/(n+ 1)

(−1)n2n(x− 1)n/n

∣∣∣∣ = lim
n→∞

2n|x− 1|
n+ 1

= lim
n→∞

2|x− 1|
1 + 1/n

= 2|x− 1|,

so the series converges absolutely if 2|x− 1| < 1, or

|x− 1| < 1

2
,

1

2
< x <

3

2
.

The power series diverges outside this interval of absolute convergence,
where |x− 1| > 1/2.

• The radius of convergence is R = 1/2 and the center of the interval of
convergence is a = 1.

• At the end point x = 3/2 where x− 1 = 1/2, the series becomes

∞∑
n=1

(−1)n

n
.

This is an alternating harmonic series, which converges by the alter-
nating series test. It does not converge absolutely since the harmonic
series diverges, so the power series converges conditionally at x = 3/2.
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• At the end point x = 1/2 where x− 1 = −1/2, the series becomes

∞∑
n=1

1

n

This is a divergent harmonic series, so the power series diverges at
x = 1/2.

• It follows that the interval of convergence is 1/2 < x ≤ 3/2.
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4. Write the Taylor polynomial P2(x) at x = 0 of order 2 for the function

f(x) = ln(1 + x).

Use Taylor’s theorem with remainder to give a numerical estimate of the
maximum error in approximating ln(1.1) by P2(0.1) .

Solution.

• We have

f ′(x) =
1

1 + x
, f ′′(x) = − 1

(1 + x)2
, f ′′′(x) =

2

(1 + x)3
.

The first few Taylor coefficients of f are therefore

c0 = f(0) = 0, c1 = f ′(0) = 1, c2 =
f ′′(0)

2!
= −1

2
.

Thus, the Taylor polynomial of f at x = 0 of order 2 is

P2(x) = c0 + c1x+ c2x
2 = x− 1

2
x2.

• By Taylor’s theorem with remainder,

ln(1 + 0.1) = P2(0.1) +R2

where

R2 =
f ′′′(c)

3!
(0.1)3 =

(0.1)3

3(1 + c)3

for some 0 < c < 0.1. Since c > 0, we have

0 < R2 <
(0.1)3

3

and therefore

P2(0.1) < ln(1.1) < P2(0.1) +
10−3

3
.

• Remark. Since P2(0.1) = 0.095 it follows that

0.095 < ln(1.1) < 0.095334.

The actual value to six decimal places is

ln(1.1) = 0.095310.
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5. (a) Find the value(s) of c for which the vectors

~u = c~i+~j + c~k, ~v = 2~i− 3~j + c~k.

are orthogonal.

(b) Find the value(s) of c for which the vectors

~u = c~i+~j + c~k, ~v = 2~i− 3~j + c~k, ~w =~i+ 6~k.

lie in the same plane.

Solution.

• (a) The vectors are orthogonal if their dot product is zero, or if

~u · ~v = c · 2 + 1 · (−3) + c · c = c2 + 2c− 3 = (c+ 3)(c− 1) = 0.

Hence, the vectors are orthogonal if

c = −3 or c = 1.

• (b) The vectors lie in the same plane if their scalar triple product is
zero, or if

~u · (~v × ~w) =

∣∣∣∣∣∣
c 1 c
2 −3 c
1 0 6

∣∣∣∣∣∣
= c

∣∣∣∣ −3 c
0 6

∣∣∣∣− ∣∣∣∣ 2 c
1 6

∣∣∣∣+ c

∣∣∣∣ 2 −3
1 0

∣∣∣∣
= c (−18− 0)− (12− c) + c (0 + 3)

= −14c− 12.

Hence, the vectors lie in the same plane if

c = −6

7
.
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6. Find an equation for the plane that is orthogonal to the curve

~r(t) = t2~i+ (2t− 1)~j + t3~k

at the point (1, 1, 1).

Solution.

• The tangent vector to the curve is

~r′(t) = 2t~i+ 2~j + 3t2~k.

• We have
~r(1) = (1, 1, 1), ~r′(1) = 2~i+ 2~j + 3~k,

and the required plane is the plane that passes through ~r(1) with nor-
mal vector ~r′(1).

• The equation of the plane is

〈2, 2, 3〉 · 〈x− 1, y − 1, z − 1〉 = 0,

or
2x+ 2y + 3z = 7.
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7. Suppose that
f(x, y) = ex cosπy

and
x = u2 − v2, y = u2 + v2.

Using the chain rule, compute the values of

∂f

∂u
,

∂f

∂v

at the point (u, v) = (1, 1).

Solution.

• According to the chain rule

∂f

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
,

∂f

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
.

• We have
∂f

∂x
= ex cos πy,

∂f

∂y
= −πex sin πy

and
∂x

∂u
= 2u,

∂x

∂v
= −2v,

∂y

∂u
= 2u,

∂y

∂v
= 2v.

• At (u, v) = (1, 1) we have (x, y) = (0, 2) and

∂f

∂x
= e0 cos 2π = 1,

∂f

∂y
= −πe0 sin 2π = 0,

∂x

∂u
= 2,

∂x

∂v
= −2,

∂y

∂u
= 2,

∂y

∂v
= 2.

• It follows that

∂f

∂u
= 1 · 2 + 0 · 2 = 2,

∂f

∂v
= 1 · (−2) + 0 · 2 = −2.
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8. Let
f(x, y, z) = ln

(
x2 + y2 − 1

)
+ y + 6z.

In what direction ~u is f(x, y, z) increasing most rapidly at the point (1, 1, 0)?
Give your answer as a unit vector ~u. What is the directional derivative of f
in the direction ~u?

Solution.

• We have

∇f(x, y, z) =

(
2x

x2 + y2 − 1

)
~i+

(
2y

x2 + y2 − 1
+ 1

)
~j + 6~k.

Thus
∇f(1, 1, 0) = 2~i+ 3~j + 6~k.

• The function f is most rapidly increasing in the direction

~u =
∇f
|∇f |

=
1

7

(
2~i+ 3~j + 6~k

)
.

• The directional derivative of f in the direction ~u is(
df

dt

)
~u

= |∇f | = 7.
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9. Find a parametric equation for the line that is orthogonal to the surface
xyz = 2 at the point (1, 1, 2).

Solution.

• The normal vector to the surface f(x, y, z) = 2 with f(x, y, z) = xyz is

∇f(x, y, z) = yz~i+ xz~j + xy~k.

Thus, the normal vector at (x, y, z) = (1, 1, 2) is

~n = ∇f(1, 1, 2) = 2~i+ 2~j + ~k.

• The normal vector ~n = 〈2, 2, 1〉 is a direction vector of the line, so a
parametric equation of the line is

〈x, y, z〉 = 〈1, 1, 2〉+ t〈2, 2, 1〉,

or
x = 1 + 2t, y = 1 + 2t, z = 2 + t.
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10. Find all critical points of the function

f(x, y) = x4 − 8x2 + 3y2 − 6y.

and classify them as maximums, minimums, or saddle-point.

Solution.

• At a critical point

fx = 4x3 − 16x = 0, fy = 6y − 6 = 0.

If follows that y = 1 and x = 0,±2 so the critical points of f are

(x, y) = (0, 1), (2, 1), (−2, 1).

• We have
fxx = 12x2 − 16, fyy = 6, fxy = 0.

Hence
fxxfyy − f 2

xy = (−16)(6) < 0 at (x, y) = (0, 1)

so f(x, y) has a saddle point at (0, 1), and

fxxfyy − f 2
xy = (32)(6) > 0, at (x, y) = (±2, 1).

Since fyy > 0, f(x, y) has minima at (±2, 1).
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11. Let
D =

{
(x, y) : x2 + y2 ≤ 1

}
be the unit disc and

f(x, y) = x2 − 2x+ y2 + 2y + 1.

Find the global maximum and minimum of

f : D → R

At what points (x, y) in D does f attain its maximum and minimum?

Solution.

• The function is differentiable everywhere. A critical point (x, y) satisfies

fx = 2x− 2 = 0, 2y + 2 = 0

which implies that (x, y) = (1,−1). This point does not lie inside D, so
f has no critical points inside D and it must attain its global maximum
and minimum on the boundary of D.

• On the boundary x2 + y2 = 1, we can write

x = cos θ, y = sin θ

where 0 ≤ θ ≤ 2π is the polar angle of (x, y). Then

f(cos θ, sin θ) = cos2 θ−2 cos θ+sin2 θ+2 sin θ+1 = 2−2 cos θ+2 sin θ.

• Since f(cos θ, sin θ) is a differentiable function of θ, the maximum and
minimum of f on the boundary are attained at a critical point where

d

dθ
f(cos θ, sin θ) = 2 sin θ + 2 cos θ = 0.

It follows that
tan θ = −1,

so θ = 3π/4 or θ = 7π/4.
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• The second derivative of f along the boundary is

d2

d2θ
f(cos θ, sin θ) = 2 cos θ − 2 sin θ

We have

cos
3π

4
= − 1√

2
, sin

3π

4
=

1√
2
, cos

7π

4
=

1√
2
, sin

7π

4
= − 1√

2

so
d2f

d2θ
< 0 at θ = 3π/4,

d2f

d2θ
> 0 at θ = 7π/4.

Thus, f has a maximum value at θ = 3π/4 and a minimum value at
θ = 7π/4.

• Evaluating the corresponding values of (x, y) and f , we find that f has
a global maximum on D at

(x, y) =

(
− 1√

2
,

1√
2

)
where f(x, y) = 2 + 2

√
2,

and a global minimum on D at

(x, y) =

(
1√
2
,− 1√

2

)
where f(x, y) = 2− 2

√
2.
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12. Suppose that the material for the top and bottom of a rectangular box
costs a dollars per square meter and the material for the four sides costs b
dollars per square meter. Use the method of Lagrange multipliers to find the
dimensions of a box of volume V cubic meters that minimizes the cost of the
materials used to construct it. What is the minimal cost?

Solution.

• Let x, y be the lengths of the horizontal sides of the box and z the
height of the box.

• The cost of the material for the box is

C(x, y, z) = 2axy + 2bxz + 2byz.

The volume of the box is xyz.

• Thus, we want to
minimize C(x, y, z)

subject to the constraint that

g(x, y, z) = 0

where
g(x, y, z) = xyz − V.

• We have

∇C = (2ay + 2bz)~i+ (2ax+ 2bz)~j + (2bx+ 2by)~k,

∇g = yz~i+ xz~j + xy~k

• By the method of Lagrange multipliers, the equations for a critical
point are ∇C = λ∇g and g = 0, or

2ay + 2bz = λyz, 2ax+ 2bz = λxz, 2bx+ 2by = λxy, xyz = V.

• It follows from the first two equations that x = y, as one would expect
by symmetry, and from the last equation that

z =
V

x2
.
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Hence, assuming that x > 0, we find that

2ax+
2bV

x2
=
λV

x
, 4b = λx

and, eliminating λ, we get

2ax =
2bV

x2
.

It follows that

x = y =

(
b

a

)1/3

V 1/3, z =
(a
b

)2/3
V 1/3.

• Remark. Note that a/b is a dimensionless ratio of costs per unit
area and V 1/3 is a length, so these results have the correct dimensions
(meters). If a = b, then x = y = z, which corresponds to the fact
that the cube is the rectangular solid with minimal surface area that
encloses a given volume. If a > b then the box is taller than it is wide
to reduce the amount of the more expensive material required for the
top and bottom, while if a < b then the box is shorter than it is wide
to reduce the amount of material required for the sides.
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