## Calculus: Math 21C, Spring 2018 <br> Sample Final Questions: Solutions

1. Do the following sequences $\left\{a_{n}\right\}$ converge or diverge as $n \rightarrow \infty$ ? If a sequence converges, find its limit. Justify your answers.
(a) $\quad a_{n}=\frac{2 n^{2}+3 n^{3}}{2 n^{3}+3 n^{2}}$;
(b) $a_{n}=\frac{\sin \left(n^{2}\right)}{\sqrt{n}}$;
(c) $\quad a_{n}=\frac{n}{\ln n}$.

## Solution.

- (a) Dividing the numerator and denominator by $n^{3}$, we have

$$
a_{n}=\frac{2 / n+3}{2+3 / n} \rightarrow \frac{3}{2} \quad \text { as } n \rightarrow \infty
$$

so the sequence converges to $3 / 2$.

- (b) Since $|\sin x| \leq 1$, we have

$$
\left|a_{n}\right| \leq \frac{1}{\sqrt{n}},
$$

and $1 / \sqrt{n} \rightarrow 0$ as $n \rightarrow \infty$, so the sequence converges to 0 by the sandwich theorem.

- (c) Since both numerator and denominator diverge to infinity, we can apply l'Hôspital's rule to get that

$$
\lim _{n \rightarrow \infty} \frac{n}{\ln n}=\lim _{x \rightarrow \infty} \frac{x}{\ln x}=\lim _{x \rightarrow \infty} \frac{1}{1 / x}=\lim _{x \rightarrow \infty} x=\infty
$$

so the sequence diverges to infinity.
2. Do the following series converge or diverge? State clearly which test you use.
(a) $\sum_{n=1}^{\infty} \frac{n+4}{6 n-17}$
(b) $\sum_{n=1}^{\infty} \sqrt{\frac{n}{n^{4}+7}}$
(c) $\sum_{n=1}^{\infty} \frac{(-5)^{n+1}}{(2 n)!}$
(d) $\sum_{n=2}^{\infty}(-1)^{n} \frac{\ln n}{n}$
(e) $\frac{1}{1^{4}}+\frac{1}{2^{4}}-\frac{1}{3^{4}}+\frac{1}{4^{4}}+\frac{1}{5^{4}}-\frac{1}{6^{4}}+\frac{1}{7^{4}}-\frac{1}{9^{4}}+\cdots$
(f) $\sum_{n=1}^{\infty}\left[e^{n}-e^{n+1}\right]$

## Solution.

- We write each series as $\sum c_{n}$.
- (a) We have

$$
\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} \frac{n+4}{6 n-17}=\frac{1}{6} .
$$

Since this limit is nonzero, the series diverges by the $n$th term test.

- (b) We have

$$
0 \leq c_{n}=\sqrt{\frac{n}{n^{4}+7}} \leq \sqrt{\frac{n}{n^{4}}}=\frac{1}{n^{3 / 2}}
$$

Therefore the series converges by the comparison test, since the $p$-series with $p=3 / 2>1$ converges.

- (c) We have

$$
\begin{aligned}
\left|\frac{c_{n+1}}{c_{n}}\right| & =\left|\frac{(-5)^{n+2} /(2 n+2)!}{(-5)^{n+1} /(2 n)!}\right| \\
& =\frac{5(2 n)!}{(2 n+2)!} \\
& =\frac{5}{(2 n+1)(2 n+2)}
\end{aligned}
$$

It follows that

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=0
$$

Since this limit exists and is less than 1 , the series converges absolutely by the ratio test, and therefore it converges.

- (d) For $x \geq 3$, we have $\ln x>1$, and

$$
\frac{d}{d x}\left(\frac{\ln x}{x}\right)=\frac{1-\ln x}{x^{2}}<0
$$

so $\ln n / n$ is decreasing for $n \geq 3$, and $\ln n / n \rightarrow 0$ as $n \rightarrow \infty$ by l'Hôspital's rule. Hence, the series converges by the alternating series test.

- (e) We have

$$
\left|c_{n}\right|=\frac{1}{n^{4}}
$$

so the series converges absolutely, since the $p$-series with $p=4$ converges. Therefore the series converges since any absolutely convergent series is convergent.

- (f) Either note that

$$
c_{n}=e^{n}-e^{n+1}=e^{n}(1-e)
$$

diverges to $-\infty$ as $n \rightarrow \infty$, so the series diverges by the $n$th term test. Or note that the series is a telescoping series of the form $c_{n}=b_{n}-b_{n+1}$ with $b_{n}=e^{n}$ and the limit of $b_{n}$ as $n \rightarrow \infty$ does not exist, so the series is a divergent telescoping series.
3. Determine the interval of convergence (including the endpoints) for the following power series. State explicitly for what values of $x$ the series converges absolutely, converges conditionally, and diverges. Specify the radius of convergence $R$ and the center of the interval of convergence $a$.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} 2^{n}}{n}(x-1)^{n}
$$

## Solution.

- Applying the ratio test, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} 2^{n+1}(x-1)^{n+1} /(n+1)}{(-1)^{n} 2^{n}(x-1)^{n} / n}\right| & =\lim _{n \rightarrow \infty} \frac{2 n|x-1|}{n+1} \\
& =\lim _{n \rightarrow \infty} \frac{2|x-1|}{1+1 / n} \\
& =2|x-1|
\end{aligned}
$$

so the series converges absolutely if $2|x-1|<1$, or

$$
|x-1|<\frac{1}{2}, \quad \frac{1}{2}<x<\frac{3}{2} .
$$

The power series diverges outside this interval of absolute convergence, where $|x-1|>1 / 2$.

- The radius of convergence is $R=1 / 2$ and the center of the interval of convergence is $a=1$.
- At the end point $x=3 / 2$ where $x-1=1 / 2$, the series becomes

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

This is an alternating harmonic series, which converges by the alternating series test. It does not converge absolutely since the harmonic series diverges, so the power series converges conditionally at $x=3 / 2$.

- At the end point $x=1 / 2$ where $x-1=-1 / 2$, the series becomes

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

This is a divergent harmonic series, so the power series diverges at $x=1 / 2$.

- It follows that the interval of convergence is $1 / 2<x \leq 3 / 2$.

4. Write the Taylor polynomial $P_{2}(x)$ at $x=0$ of order 2 for the function

$$
f(x)=\ln (1+x) .
$$

Use Taylor's theorem with remainder to give a numerical estimate of the maximum error in approximating $\ln (1.1)$ by $P_{2}(0.1)$.

## Solution.

- We have

$$
f^{\prime}(x)=\frac{1}{1+x}, \quad f^{\prime \prime}(x)=-\frac{1}{(1+x)^{2}}, \quad f^{\prime \prime \prime}(x)=\frac{2}{(1+x)^{3}} .
$$

The first few Taylor coefficients of $f$ are therefore

$$
c_{0}=f(0)=0, \quad c_{1}=f^{\prime}(0)=1, \quad c_{2}=\frac{f^{\prime \prime}(0)}{2!}=-\frac{1}{2} .
$$

Thus, the Taylor polynomial of $f$ at $x=0$ of order 2 is

$$
P_{2}(x)=c_{0}+c_{1} x+c_{2} x^{2}=x-\frac{1}{2} x^{2} .
$$

- By Taylor's theorem with remainder,

$$
\ln (1+0.1)=P_{2}(0.1)+R_{2}
$$

where

$$
R_{2}=\frac{f^{\prime \prime \prime}(c)}{3!}(0.1)^{3}=\frac{(0.1)^{3}}{3(1+c)^{3}}
$$

for some $0<c<0.1$. Since $c>0$, we have

$$
0<R_{2}<\frac{(0.1)^{3}}{3}
$$

and therefore

$$
P_{2}(0.1)<\ln (1.1)<P_{2}(0.1)+\frac{10^{-3}}{3}
$$

- Remark. Since $P_{2}(0.1)=0.095$ it follows that

$$
0.095<\ln (1.1)<0.095334
$$

The actual value to six decimal places is

$$
\ln (1.1)=0.095310
$$

5. (a) Find the value(s) of $c$ for which the vectors

$$
\vec{u}=c \vec{i}+\vec{j}+c \vec{k}, \quad \vec{v}=2 \vec{i}-3 \vec{j}+c \vec{k}
$$

are orthogonal.
(b) Find the value(s) of $c$ for which the vectors

$$
\vec{u}=c \vec{i}+\vec{j}+c \vec{k}, \quad \vec{v}=2 \vec{i}-3 \vec{j}+c \vec{k}, \quad \vec{w}=\vec{i}+6 \vec{k} .
$$

lie in the same plane.

## Solution.

- (a) The vectors are orthogonal if their dot product is zero, or if

$$
\vec{u} \cdot \vec{v}=c \cdot 2+1 \cdot(-3)+c \cdot c=c^{2}+2 c-3=(c+3)(c-1)=0 .
$$

Hence, the vectors are orthogonal if

$$
c=-3 \text { or } c=1 .
$$

- (b) The vectors lie in the same plane if their scalar triple product is zero, or if

$$
\begin{aligned}
\vec{u} \cdot(\vec{v} \times \vec{w}) & =\left|\begin{array}{ccc}
c & 1 & c \\
2 & -3 & c \\
1 & 0 & 6
\end{array}\right| \\
& =c\left|\begin{array}{cc}
-3 & c \\
0 & 6
\end{array}\right|-\left|\begin{array}{cc}
2 & c \\
1 & 6
\end{array}\right|+c\left|\begin{array}{cc}
2 & -3 \\
1 & 0
\end{array}\right| \\
& =c(-18-0)-(12-c)+c(0+3) \\
& =-14 c-12 .
\end{aligned}
$$

Hence, the vectors lie in the same plane if

$$
c=-\frac{6}{7} .
$$

6. Find an equation for the plane that is orthogonal to the curve

$$
\vec{r}(t)=t^{2} \vec{i}+(2 t-1) \vec{j}+t^{3} \vec{k}
$$

at the point $(1,1,1)$.

## Solution.

- The tangent vector to the curve is

$$
\vec{r}^{\prime}(t)=2 t \vec{i}+2 \vec{j}+3 t^{2} \vec{k} .
$$

- We have

$$
\vec{r}(1)=(1,1,1), \quad \vec{r}^{\prime}(1)=2 \vec{i}+2 \vec{j}+3 \vec{k},
$$

and the required plane is the plane that passes through $\vec{r}(1)$ with normal vector $\vec{r}^{\prime}(1)$.

- The equation of the plane is

$$
\langle 2,2,3\rangle \cdot\langle x-1, y-1, z-1\rangle=0,
$$

or

$$
2 x+2 y+3 z=7
$$

7. Suppose that

$$
f(x, y)=e^{x} \cos \pi y
$$

and

$$
x=u^{2}-v^{2}, \quad y=u^{2}+v^{2} .
$$

Using the chain rule, compute the values of

$$
\frac{\partial f}{\partial u}, \quad \frac{\partial f}{\partial v}
$$

at the point $(u, v)=(1,1)$.

## Solution.

- According to the chain rule

$$
\frac{\partial f}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u}, \quad \frac{\partial f}{\partial v}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}
$$

- We have

$$
\frac{\partial f}{\partial x}=e^{x} \cos \pi y, \quad \frac{\partial f}{\partial y}=-\pi e^{x} \sin \pi y
$$

and

$$
\frac{\partial x}{\partial u}=2 u, \quad \frac{\partial x}{\partial v}=-2 v, \quad \frac{\partial y}{\partial u}=2 u, \quad \frac{\partial y}{\partial v}=2 v
$$

- At $(u, v)=(1,1)$ we have $(x, y)=(0,2)$ and

$$
\begin{array}{lll}
\frac{\partial f}{\partial x}=e^{0} \cos 2 \pi=1, & \frac{\partial f}{\partial y}=-\pi e^{0} \sin 2 \pi=0 \\
\frac{\partial x}{\partial u}=2, & \frac{\partial x}{\partial v}=-2, & \frac{\partial y}{\partial u}=2,
\end{array}
$$

- It follows that

$$
\frac{\partial f}{\partial u}=1 \cdot 2+0 \cdot 2=2, \quad \frac{\partial f}{\partial v}=1 \cdot(-2)+0 \cdot 2=-2 .
$$

8. Let

$$
f(x, y, z)=\ln \left(x^{2}+y^{2}-1\right)+y+6 z .
$$

In what direction $\vec{u}$ is $f(x, y, z)$ increasing most rapidly at the point $(1,1,0)$ ? Give your answer as a unit vector $\vec{u}$. What is the directional derivative of $f$ in the direction $\vec{u}$ ?

## Solution.

- We have

$$
\nabla f(x, y, z)=\left(\frac{2 x}{x^{2}+y^{2}-1}\right) \vec{i}+\left(\frac{2 y}{x^{2}+y^{2}-1}+1\right) \vec{j}+6 \vec{k} .
$$

Thus

$$
\nabla f(1,1,0)=2 \vec{i}+3 \vec{j}+6 \vec{k}
$$

- The function $f$ is most rapidly increasing in the direction

$$
\vec{u}=\frac{\nabla f}{|\nabla f|}=\frac{1}{7}(2 \vec{i}+3 \vec{j}+6 \vec{k}) .
$$

- The directional derivative of $f$ in the direction $\vec{u}$ is

$$
\left(\frac{d f}{d t}\right)_{\vec{u}}=|\nabla f|=7 .
$$

9. Find a parametric equation for the line that is orthogonal to the surface $x y z=2$ at the point $(1,1,2)$.

## Solution.

- The normal vector to the surface $f(x, y, z)=2$ with $f(x, y, z)=x y z$ is

$$
\nabla f(x, y, z)=y z \vec{i}+x z \vec{j}+x y \vec{k} .
$$

Thus, the normal vector at $(x, y, z)=(1,1,2)$ is

$$
\vec{n}=\nabla f(1,1,2)=2 \vec{i}+2 \vec{j}+\vec{k} .
$$

- The normal vector $\vec{n}=\langle 2,2,1\rangle$ is a direction vector of the line, so a parametric equation of the line is

$$
\langle x, y, z\rangle=\langle 1,1,2\rangle+t\langle 2,2,1\rangle
$$

or

$$
x=1+2 t, \quad y=1+2 t, \quad z=2+t
$$

10. Find all critical points of the function

$$
f(x, y)=x^{4}-8 x^{2}+3 y^{2}-6 y
$$

and classify them as maximums, minimums, or saddle-point.
Solution.

- At a critical point

$$
f_{x}=4 x^{3}-16 x=0, \quad f_{y}=6 y-6=0
$$

If follows that $y=1$ and $x=0, \pm 2$ so the critical points of $f$ are

$$
(x, y)=(0,1),(2,1),(-2,1) .
$$

- We have

$$
f_{x x}=12 x^{2}-16, \quad f_{y y}=6, \quad f_{x y}=0
$$

Hence

$$
f_{x x} f_{y y}-f_{x y}^{2}=(-16)(6)<0 \quad \text { at }(x, y)=(0,1)
$$

so $f(x, y)$ has a saddle point at $(0,1)$, and

$$
f_{x x} f_{y y}-f_{x y}^{2}=(32)(6)>0, \quad \text { at }(x, y)=( \pm 2,1)
$$

Since $f_{y y}>0, f(x, y)$ has minima at $( \pm 2,1)$.
11. Let

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

be the unit disc and

$$
f(x, y)=x^{2}-2 x+y^{2}+2 y+1
$$

Find the global maximum and minimum of

$$
f: D \rightarrow \mathbb{R}
$$

At what points $(x, y)$ in $D$ does $f$ attain its maximum and minimum?

## Solution.

- The function is differentiable everywhere. A critical point $(x, y)$ satisfies

$$
f_{x}=2 x-2=0, \quad 2 y+2=0
$$

which implies that $(x, y)=(1,-1)$. This point does not lie inside $D$, so $f$ has no critical points inside $D$ and it must attain its global maximum and minimum on the boundary of $D$.

- On the boundary $x^{2}+y^{2}=1$, we can write

$$
x=\cos \theta, \quad y=\sin \theta
$$

where $0 \leq \theta \leq 2 \pi$ is the polar angle of $(x, y)$. Then

$$
f(\cos \theta, \sin \theta)=\cos ^{2} \theta-2 \cos \theta+\sin ^{2} \theta+2 \sin \theta+1=2-2 \cos \theta+2 \sin \theta .
$$

- Since $f(\cos \theta, \sin \theta)$ is a differentiable function of $\theta$, the maximum and minimum of $f$ on the boundary are attained at a critical point where

$$
\frac{d}{d \theta} f(\cos \theta, \sin \theta)=2 \sin \theta+2 \cos \theta=0
$$

It follows that

$$
\tan \theta=-1,
$$

so $\theta=3 \pi / 4$ or $\theta=7 \pi / 4$.

- The second derivative of $f$ along the boundary is

$$
\frac{d^{2}}{d^{2} \theta} f(\cos \theta, \sin \theta)=2 \cos \theta-2 \sin \theta
$$

We have

$$
\cos \frac{3 \pi}{4}=-\frac{1}{\sqrt{2}}, \quad \sin \frac{3 \pi}{4}=\frac{1}{\sqrt{2}}, \quad \cos \frac{7 \pi}{4}=\frac{1}{\sqrt{2}}, \quad \sin \frac{7 \pi}{4}=-\frac{1}{\sqrt{2}}
$$

so

$$
\frac{d^{2} f}{d^{2} \theta}<0 \quad \text { at } \theta=3 \pi / 4, \quad \frac{d^{2} f}{d^{2} \theta}>0 \quad \text { at } \theta=7 \pi / 4
$$

Thus, $f$ has a maximum value at $\theta=3 \pi / 4$ and a minimum value at $\theta=7 \pi / 4$.

- Evaluating the corresponding values of $(x, y)$ and $f$, we find that $f$ has a global maximum on $D$ at

$$
(x, y)=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \quad \text { where } \quad f(x, y)=2+2 \sqrt{2}
$$

and a global minimum on $D$ at

$$
(x, y)=\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right) \quad \text { where } \quad f(x, y)=2-2 \sqrt{2}
$$

12. Suppose that the material for the top and bottom of a rectangular box costs $a$ dollars per square meter and the material for the four sides costs $b$ dollars per square meter. Use the method of Lagrange multipliers to find the dimensions of a box of volume $V$ cubic meters that minimizes the cost of the materials used to construct it. What is the minimal cost?

## Solution.

- Let $x, y$ be the lengths of the horizontal sides of the box and $z$ the height of the box.
- The cost of the material for the box is

$$
C(x, y, z)=2 a x y+2 b x z+2 b y z
$$

The volume of the box is $x y z$.

- Thus, we want to

$$
\operatorname{minimize} C(x, y, z)
$$

subject to the constraint that

$$
g(x, y, z)=0
$$

where

$$
g(x, y, z)=x y z-V
$$

- We have

$$
\begin{aligned}
\nabla C & =(2 a y+2 b z) \vec{i}+(2 a x+2 b z) \vec{j}+(2 b x+2 b y) \vec{k} \\
\nabla g & =y z \vec{i}+x z \vec{j}+x y \vec{k}
\end{aligned}
$$

- By the method of Lagrange multipliers, the equations for a critical point are $\nabla C=\lambda \nabla g$ and $g=0$, or

$$
2 a y+2 b z=\lambda y z, \quad 2 a x+2 b z=\lambda x z, \quad 2 b x+2 b y=\lambda x y, \quad x y z=V .
$$

- It follows from the first two equations that $x=y$, as one would expect by symmetry, and from the last equation that

$$
z=\frac{V}{x^{2}}
$$

Hence, assuming that $x>0$, we find that

$$
2 a x+\frac{2 b V}{x^{2}}=\frac{\lambda V}{x}, \quad 4 b=\lambda x
$$

and, eliminating $\lambda$, we get

$$
2 a x=\frac{2 b V}{x^{2}}
$$

It follows that

$$
x=y=\left(\frac{b}{a}\right)^{1 / 3} V^{1 / 3}, \quad z=\left(\frac{a}{b}\right)^{2 / 3} V^{1 / 3}
$$

- Remark. Note that $a / b$ is a dimensionless ratio of costs per unit area and $V^{1 / 3}$ is a length, so these results have the correct dimensions (meters). If $a=b$, then $x=y=z$, which corresponds to the fact that the cube is the rectangular solid with minimal surface area that encloses a given volume. If $a>b$ then the box is taller than it is wide to reduce the amount of the more expensive material required for the top and bottom, while if $a<b$ then the box is shorter than it is wide to reduce the amount of material required for the sides.

