Calculus
 Math 21C, Spring 2018
 Solutions to Sample Questions: Midterm I

1. Do the following sequences $\left\{a_{n}\right\}$ converge or diverge as $n \rightarrow \infty$? Give reasons for your answer. If a sequence converges, find its limit.
(a) $a_{n}=\frac{\cos n}{n}$;
(b) $\quad a_{n}=\frac{\sqrt{n}}{\ln n} ;$
(c) $a_{n}=\sqrt{n^{2}+1}-n$.

Solution.

- (a) We have

$$
-\frac{1}{n} \leq \frac{\cos n}{n} \leq \frac{1}{n}
$$

Since

$$
-\frac{1}{n} \rightarrow 0, \quad \frac{1}{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

the 'sandwich' theorem implies that $\cos n / n \rightarrow 0$ as $n \rightarrow \infty$. So this sequence converges to 0 .

- (b) Since $\sqrt{x} \rightarrow \infty$ and $\ln x \rightarrow \infty$ as $x \rightarrow \infty$, l'Hôspital's rule implies that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\ln n} & =\lim _{x \rightarrow \infty} \frac{\sqrt{x}}{\ln x} \\
& =\lim _{x \rightarrow \infty} \frac{1 /(2 \sqrt{x})}{1 / x} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{x}}{2} \\
& =\infty .
\end{aligned}
$$

So this sequence diverges to ∞.

- (c) We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+1}-n\right) & =\lim _{n \rightarrow \infty} \frac{\left(\sqrt{n^{2}+1}-n\right)\left(\sqrt{n^{2}+1}+n\right)}{\sqrt{n^{2}+1}+n} \\
& =\lim _{n \rightarrow \infty} \frac{\left(n^{2}+1\right)-n^{2}}{\sqrt{n^{2}+1}+n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n^{2}+1}+n} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{1}{\sqrt{1+1 / n^{2}}+1}\right) \\
& =0
\end{aligned}
$$

So this sequence converges to 0 .
2. Do the following series converge absolutely, converge conditionally, or diverge? Give reasons for your answer.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$;
(b) $\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$;
(c) $\sum_{n=1}^{\infty}(-1)^{n} \sin n$

Solution.

- (a) The series of absolute values,

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

is a p-series with $p=1 / 2$, which diverges since $p<1$. Thus, the series is not absolutely convergent. Since $u_{n}=1 / \sqrt{n}$ is a decreasing positive sequence with $u_{n} \rightarrow 0$ as $n \rightarrow \infty$, the alternating series test implies that the series converges. So the series is conditionally convergent.

- (b) The series of absolute values

$$
\sum_{n=1}^{\infty} \frac{|\sin n|}{n^{2}}
$$

converges by the comparison test, since

$$
0 \leq \frac{|\sin n|}{n^{2}} \leq \frac{1}{n^{2}}
$$

and

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

is a convergent p-series (with $p=2>1$). So the series is absolutely convergent.

- (c) The limit

$$
\lim _{n \rightarrow \infty}(-1)^{n} \sin n
$$

doesn't exist since the sequence oscillates as $n \rightarrow \infty$. For example, since $2 \pi / 3>2$, for every positive integer k, there are even integers m, n with

$$
2 \pi k+\frac{\pi}{6}<m<2 k \pi+\frac{5 \pi}{6}, \quad 2 \pi k+\frac{7 \pi}{6}<n<2 \pi k+\frac{11 \pi}{6}
$$

such that $\sin m>1 / 2$ and $\sin n<-1 / 2$. So the series diverges by the nth term test.
3. Determine whether each of the following series converges or diverges and explain your answer:
(a) $\sum_{n=1}^{\infty} \frac{n+4}{6 n-17}$;
(b) $\sum_{n=1}^{\infty}\left(\frac{-4}{5}\right)^{n}$;
(c) $\quad \sum_{n=2}^{\infty} \sqrt{\frac{n}{n^{4}+7}}$;
(d) $\sum_{n=1}^{\infty} \frac{5^{n+1}}{(2 n)!}$;
(e) $\sum_{n=3}^{\infty} \frac{1}{n \ln ^{2} n}$;
(f) $\sum_{n=3}^{\infty} \frac{(-1)^{n+1}}{n+2 \sqrt{n}}$;
(g) $\frac{1}{1^{4}}+\frac{1}{2^{4}}-\frac{1}{3^{4}}+\frac{1}{4^{4}}+\frac{1}{5^{4}}-\frac{1}{6^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}-\frac{1}{9^{4}}+\cdots$;
(h) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$;
(i) $\sum_{n=1}^{\infty}[\tan (n)-\tan (n+1)]$.

Solution. Write each series as $\sum a_{n}$.

- (a) We have

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n+4}{6 n-17}=\lim _{n \rightarrow \infty} \frac{1+4 / n}{6-17 / n}=\frac{1}{6}
$$

Since the limit of the terms a_{n} is nonzero, the series diverges by the nth term test.

- (b) This series is a geometric series with ratio $r=-4 / 5$. Since $|r|<1$, the series converges. In fact, we have

$$
\sum_{n=1}^{\infty}\left(\frac{-4}{5}\right)^{n}=-\frac{4}{5} \sum_{n=0}^{\infty}\left(\frac{-4}{5}\right)^{n}=-\frac{4}{5}\left(\frac{1}{1-(-4 / 5)}\right)=-\frac{4}{5} \cdot \frac{5}{9}=-\frac{4}{9}
$$

- (c) We use the limit comparison test and compare with the p-series

$$
\sum_{n=2}^{\infty} b_{n}, \quad b_{n}=\frac{1}{n^{3 / 2}}
$$

This series converges since $p=3 / 2>1$. Moreover,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{\sqrt{n /\left(n^{4}+7\right)}}{1 / n^{3 / 2}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{3 / 2} \sqrt{n}}{\sqrt{n^{4}+7}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+7 / n^{4}}} \\
& =1
\end{aligned}
$$

Since this limit is finite and $\sum b_{n}$ converges, the limit comparison test implies that the series converges.

- (d) We use the ratio test. We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{5^{n+2} /(2 n+2)!}{5^{n+1} /(2 n)!} \\
& =\lim _{n \rightarrow \infty} \frac{5(2 n)!}{(2 n+2)!} \\
& =\lim _{n \rightarrow \infty} \frac{5}{(2 n+1) \cdot(2 n+2)} \\
& =0 .
\end{aligned}
$$

Since this limit is less than 1, the ratio test implies that the series converges.

- (e) We use the integral test. Since $1 /\left(x \ln ^{2} x\right)$ is a continuous, positive, decreasing function for $x \geq 2$, the series converges or diverges with the integral

$$
\int_{2}^{\infty} \frac{1}{x \ln ^{2} x} d x
$$

Making the substitution $u=\ln x$, with $d u=d x / x$, we find that

$$
\begin{aligned}
\int_{2}^{\infty} \frac{1}{x \ln ^{2} x} d x & =\int_{\ln 2}^{\infty} \frac{d u}{u^{2}} \\
& =\lim _{b \rightarrow \infty} \int_{\ln 2}^{b} \frac{d u}{u^{2}} \\
& =\lim _{b \rightarrow \infty}\left[-\frac{1}{u}\right]_{\ln 2}^{b} \\
& =\frac{1}{\ln 2} .
\end{aligned}
$$

Since this integral converges, the series converges.

- (f) The sequence

$$
u_{n}=\frac{1}{n+2 \sqrt{n}}
$$

is a positive, decreasing sequence such that $u_{n} \rightarrow 0$ as $n \rightarrow \infty$. Therefore, the series $\sum(-1)^{n+1} u_{n}$ converges by the alternating series test.

- (g) We have

$$
\left|a_{n}\right|=\frac{1}{n^{4}},
$$

so $\sum\left|a_{n}\right|$ is a convergent p-series (with $p=4>1$). Therefore the series $\sum a_{n}$ converges absolutely, and it converges.

- (h) We use the ratio test. We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{((n+1)!)^{2} /(2(n+1))!}{(n!)^{2} /(2 n)!} \\
& =\lim _{n \rightarrow \infty} \frac{((n+1)!)^{2}(2 n)!}{(n!)^{2}(2 n+2)!} \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(2 n+1) \cdot(2 n+2)} \\
& =\lim _{n \rightarrow \infty} \frac{(1+1 / n)^{2}}{(2+1 / n) \cdot(2+2 / n)} \\
& =\frac{1}{4} .
\end{aligned}
$$

Since this limit is less than 1 , the series converges by the ratio test.

- (i) This series is a telescoping series. The nth partial sum is

$$
\begin{aligned}
s_{n}= & \sum_{k=1}^{n}[\tan (k)-\tan (k+1)] \\
= & {[\tan (1)-\tan (2)]+[\tan (2)-\tan (3)] } \\
& \quad+[\tan (3)-\tan (4)]+\cdots+[\tan (n)-\tan (n+1)] \\
= & \tan (1)-\tan (n+1) .
\end{aligned}
$$

Since

$$
\lim _{n \rightarrow \infty} \tan (n+1)
$$

does not exist, the series does not converge.
4. Are the following equalities true or false? Justify your answer.
(a) $1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}-\frac{1}{6^{2}}+\frac{1}{7^{2}}+\ldots$

$$
=1+\frac{1}{3^{2}}-\frac{1}{2^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}-\frac{1}{4^{2}}+\frac{1}{9^{2}}+\frac{1}{11^{2}}-\frac{1}{6^{2}}+\ldots ;
$$

(b) $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}+\ldots$

$$
=1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\ldots ;
$$

Solution.

- (a) The series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\frac{1}{5^{2}}-\frac{1}{6^{2}}+\frac{1}{7^{2}}+\ldots
$$

converges absolutely since

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

is a convergent p-series (with $p=2>1$). Therefore any rearrangement of the series converges to the same sum, and the equality is true.

- (b) The series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}+\ldots
$$

converges by the alternating series test, but it does not converge absolutely since

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

is the divergent harmonic series. Therefore a rearrangement of the series need not, in general, converge; moreover, if a rearrangement does converge, it need not converge to the same sum. So the sums in (b) need not be equal.

- This leaves open the question of whether or not the particular rearrangements given in (b) converge to the same sum. The sums are, in fact, not equal, but it requires a trickier argument to show this. We give the details for completeness. The following discussion is optional and goes beyond what will be asked in the midterm.
- Let

$$
\begin{array}{r}
s_{2 n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2 n-1}-\frac{1}{2 n}, \\
r_{2 n}=1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\ldots \\
\cdots+\frac{1}{4 n-3}+\frac{1}{4 n-1}-\frac{1}{2 n}
\end{array}
$$

denote suitable partial sums of the arrangements in (b). Then, looking at the terms included in $s_{2 n}$ and $r_{2 n}$, we see that

$$
\begin{equation*}
r_{2 n}=s_{2 n}+e_{n} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
e_{n}=\frac{1}{2 n+1}+\frac{1}{2 n+3}+\cdots+\frac{1}{4 n-3}+\frac{1}{4 n-1} . \tag{2}
\end{equation*}
$$

There are n terms in this expression for e_{n} and each term is less than or equal to $1 /(2 n+1)$ and greater than or equal to $1 /(4 n-1)$. Thus,

$$
\begin{equation*}
s_{2 n}+n \cdot\left(\frac{1}{4 n-1}\right) \leq r_{2 n} \leq s_{2 n}+n \cdot\left(\frac{1}{2 n+1}\right) \tag{3}
\end{equation*}
$$

- Let

$$
\begin{aligned}
& S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots, \\
& R=1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\ldots
\end{aligned}
$$

The series for S converges by the alternating series test. By considering the partial sums of the series for R one can show in a similar way to the proof of the alternating series test that the series for R converges. Then we have

$$
S=\lim _{n \rightarrow \infty} s_{2 n}, \quad R=\lim _{n \rightarrow \infty} r_{2 n}
$$

Taking the limit of (3) as $n \rightarrow \infty$, we get

$$
S+\lim _{n \rightarrow \infty}\left(\frac{n}{4 n-1}\right) \leq R \leq S+\lim _{n \rightarrow \infty}\left(\frac{n}{2 n+1}\right)
$$

or

$$
\begin{equation*}
S+\frac{1}{4} \leq R \leq S+\frac{1}{2} \tag{4}
\end{equation*}
$$

Thus, the two rearrangements cannot converge to the same sum.

- We can find R exactly in terms of S by observing that

$$
\begin{aligned}
& \frac{1}{2 n+1}+\frac{1}{2 n+3}+\cdots+\frac{1}{4 n-1} \\
& \quad=\frac{1}{2 n}\left(\frac{1}{1+(1 / 2 n)}+\frac{1}{1+(3 / 2 n)}+\cdots+\frac{1}{2-(1 / 2 n)}\right)
\end{aligned}
$$

is a Riemann sum for the integral

$$
\frac{1}{2} \int_{1}^{2} \frac{1}{x} d x
$$

Therefore, if e_{n} is given by (2), we have

$$
\begin{align*}
\lim _{n \rightarrow \infty} e_{n} & =\lim _{n \rightarrow \infty}\left(\frac{1}{2 n+1}+\frac{1}{2 n+3}+\cdots+\frac{1}{4 n-3}+\frac{1}{4 n-1}\right) \\
& =\frac{1}{2} \int_{1}^{2} \frac{1}{x} d x \tag{5}\\
& =\frac{1}{2} \ln 2
\end{align*}
$$

Taking the limit of (1) as $n \rightarrow \infty$ and using (5), we get

$$
R=S+\frac{1}{2} \ln 2
$$

Note that $\ln 2 / 2 \approx 0.397$ lies between $1 / 4$ and $1 / 2$ as required by (4).

- In fact, the sum of the alternating harmonic series is $S=\ln 2$, so we get the results

$$
\begin{aligned}
& 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\cdots=\ln 2 \\
& 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\cdots=\frac{3}{2} \ln 2 .
\end{aligned}
$$

5. State the definition for a sequence $\left\{a_{n}\right\}$ to converge to a limit L. If

$$
a_{n}=\frac{n^{2}+1}{n^{2}} \quad \text { for } n=1,2,3, \ldots
$$

prove from the definition that

$$
\lim _{n \rightarrow \infty} a_{n}=1
$$

Solution.

- The definition of

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

is that for every $\epsilon>0$ there exists a number N such that

$$
\left|a_{n}-L\right|<\epsilon \quad \text { whenever } n>N .
$$

- Let $\epsilon>0$. Choose $N=1 / \sqrt{\epsilon}$. Then if $n>N$,

$$
\begin{aligned}
\left|a_{n}-1\right| & =\left|\frac{n^{2}+1}{n^{2}}-1\right| \\
& =\left|\frac{1}{n^{2}}\right| \\
& <\frac{1}{N^{2}} \\
& <\epsilon
\end{aligned}
$$

Hence,

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{2}}=1
$$

Additional question. Does the series

$$
\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}
$$

converge or diverge? Justify your answer.

Solution.

- The series converges. We'll show this in two different ways.
- Method 1. The terms in the series are given by

$$
a_{n}=f(n), \quad f(x)=\frac{1}{(\ln x)^{\ln x}}
$$

The function f is continuous, positive and decreasing, so by the integral test the series converges if and only if the improper Riemann integral

$$
I=\int_{a}^{\infty} \frac{1}{(\ln x)^{\ln x}} d x
$$

converges for some $a \geq 2$. Using the substitution

$$
x=e^{u}, \quad \ln x=u, \quad d x=e^{u} d u
$$

we get that

$$
I=\int_{c}^{\infty} \frac{e^{u}}{u^{u}} d u=\int_{c}^{\infty}\left(\frac{e}{u}\right)^{u} d u, \quad c=e^{a}
$$

Let $c=e^{2}$ (any other choice $c>e$ would also work). If $c \leq u<\infty$, then $e / u \leq e / c=1 / e$, so

$$
\int_{c}^{\infty}\left(\frac{e}{u}\right)^{u} d u \leq \int_{c}^{\infty} e^{-u} d u=\lim _{b \rightarrow \infty} \int_{c}^{b} e^{-u} d u=\lim _{b \rightarrow \infty}\left[e^{-c}-e^{-b}\right]=e^{-c}
$$

Hence, the integral converges, so the series converges.

- Method 2. For any $x>0$, we have $x=e^{\ln x}$, so

$$
\ln n=e^{\ln \ln n}
$$

It follows that

$$
(\ln n)^{\ln n}=\left(e^{\ln \ln n}\right)^{\ln n}=e^{\ln n \cdot \ln \ln n}=\left(e^{\ln n}\right)^{\ln \ln n}=n^{\ln \ln n} .
$$

Since $\ln \ln n \rightarrow \infty$ as $n \rightarrow \infty$, albeit very slowly, there exists $N>0$ such that $\ln \ln n \geq 2$ for all $n>N$. (In fact, we can take $N=e^{e^{2}}$.) Then for $n>N$ we have

$$
0 \leq \frac{1}{(\ln n)^{\ln n}}=\frac{1}{n^{\ln \ln n}} \leq \frac{1}{n^{2}}
$$

Since $\sum \frac{1}{n^{2}}$ is a convergent p-series, the positive series $\sum \frac{1}{(\ln n)^{\ln n}}$ converges by the comparison test.

