Calculus: Math 21C, Spring 2018

Sample Questions: Midterm 2

1. Determine the interval of convergence (including the endpoints) for the following power series. State explicitly for what values of x the series converges absolutely, converges conditionally, and diverges. In each case, specify the radius of convergence R and the center of the interval of convergence a.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n} 2^{n}}{n}(x-1)^{n}$;
(b) $\sum_{n=0}^{\infty} \frac{1}{3^{n}+1} x^{2 n}$;
(c) $\sum_{n=0}^{\infty} \frac{1}{n^{2} 5^{n}}(2 x+1)^{n}$.
2. Let

$$
\vec{u}=2 \vec{i}-\vec{j}+3 \vec{k}, \quad \vec{v}=-\vec{i}+2 \vec{j}+2 \vec{k} .
$$

Compute: (a) $|\vec{u}|$; (b) $|\vec{v}| ;$ (c) the angle θ between \vec{u}, \vec{v} (you can express it as an inverse trigonometric function); (d) the projection $\operatorname{proj}_{\vec{v}} \vec{u}$ of \vec{u} in the direction of \vec{v}.
3. (a) Find the area of the triangle with vertices $P(-2,2,0), Q(0,1,-1)$ and $R(-1,2,-2)$.
(b) Find a parametric equation for the line in which the planes $3 x-6 y-4 z=$ 15 and $6 x+y-2 z=5$ intersect.
4. Let

$$
f(x, y)=e^{x y} \ln (y)
$$

Compute the partial derivatives $f_{x}, f_{y}, f_{x x}, f_{x y}$ and $f_{y y}$. (You do NOT need to simplify your answers.)
5. (a) Find the Taylor polynomial $P_{2}(x)$ of order 2 centered at $x=0$ for the function $f(x)=e^{-x^{2}}$.
(b) Use Taylor's theorem with remainder $R_{2}(x)$ to estimate the maximum error $\left|f(x)-P_{2}(x)\right|$ for $0 \leq x \leq 1$.
(c) Use the results of (a) and (b) to obtain an approximate value for the integral

$$
\int_{0}^{1} e^{-x^{2}} d x
$$

and estimate the maximum error in your approximate value for the integral.
6. Suppose that the functions $f(x), g(x)$ have the Taylor series expansions at zero, up to second degree terms, given by

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots, \quad g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots
$$

(a) According to Taylor's theorem, how are a_{0}, a_{1}, a_{2} given in terms of f and its derivatives and b_{0}, b_{1}, b_{2} in terms of g and its derivative?
(b) Find the Taylor series for $h(x)=f(x) g(x)$ at zero, up to second degree terms, by multiplying the Taylor series for $f(x)$ and $g(x)$.
(c) Use the product rule to compute $h^{\prime}(x), h^{\prime \prime}(x)$ in terms of the derivatives of $f(x), g(x)$. Show that the use of these expressions in Taylor's theorem for $h(x)$ gives the same series as the one you found in (b).

