Calculus: Math 21C, Spring 2018

 Solutions to Sample Questions: Midterm 21. Determine the interval of convergence (including the endpoints) for the following power series. State explicitly for what values of x the series converges absolutely, converges conditionally, and diverges. In each case, specify the radius of convergence R and the center of the interval of convergence a.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n} 2^{n}}{n}(x-1)^{n}$;
(b) $\sum_{n=0}^{\infty} \frac{1}{3^{n}+1} x^{2 n}$;
(c) $\sum_{n=0}^{\infty} \frac{1}{n^{2} 5^{n}}(2 x+1)^{n}$.

Solution.

- (a) We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} 2^{n+1}(x-1)^{n+1} /(n+1)}{(-1)^{n} 2^{n}(x-1)^{n} / n}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{2(x-1) n}{n+1}\right| \\
& =2|x-1| \lim _{n \rightarrow \infty} \frac{n}{n+1} \\
& =2|x-1| \lim _{n \rightarrow \infty} \frac{1}{1+1 / n} \\
& =2|x-1|
\end{aligned}
$$

By the ratio test, the series converges absolutely when

$$
2|x-1|<1
$$

or $|x-1|<1 / 2$.

- Therefore, $a=1$ and $R=1 / 2$. The series converges absolutely if $1 / 2<x<3 / 2$ and diverges if $-\infty<x<1 / 2$ or $3 / 2<x<\infty$.
- At the endpoint $x=3 / 2$ of the interval of convergence, the series becomes

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

This is the alternating harmonic series. It converges by the alternating series test but does not converge absolutely since the harmonic series diverges. Therefore, the series converges conditionally at $x=3 / 2$.

- At the endpoint $x=1 / 2$ of the interval of convergence, the series becomes

$$
-\sum_{n=1}^{\infty} \frac{1}{n}
$$

which a harmonic series. Therefore, the series diverges at $x=1 / 2$.

- (b) We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{x^{2(n+1)} /\left(3^{n+1}+1\right)}{x^{2 n} /\left(3^{n}+1\right)}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{x^{2}\left(3^{n}+1\right)}{3^{n+1}+1}\right| \\
& =x^{2} \lim _{n \rightarrow \infty} \frac{3^{n}+1}{3^{n+1}+1} \\
& =x^{2} \lim _{n \rightarrow \infty} \frac{1+1 / 3^{n}}{3+1 / 3^{n}} \\
& =\frac{x^{2}}{3}
\end{aligned}
$$

By the ratio test, the series converges absolutely when

$$
\frac{x^{2}}{3}<1
$$

or $|x|<\sqrt{3}$.

- Therefore, $a=0$ and $R=\sqrt{3}$. The series converges absolutely if $|x|<\sqrt{3}$ and diverges if $|x|>\sqrt{3}$.
- At the endpoints $x= \pm \sqrt{3}$ of the interval of convergence, the series becomes

$$
\sum_{n=0}^{\infty} \frac{3^{n}}{3^{n}+1}
$$

Since

$$
\lim _{n \rightarrow \infty} \frac{3^{n}}{3^{n}+1}=1
$$

this series diverges by the nth term test.

- (c) We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(2 x+1)^{n+1} /\left[(n+1)^{2} 5^{n+1}\right]}{(2 x+1)^{n} /\left[n^{2} 5^{n}\right]}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(2 x+1) n^{2}}{5(n+1)^{2}}\right| \\
& =\frac{|2 x+1|}{5} \lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}} \\
& =\frac{|2 x+1|}{5} \lim _{n \rightarrow \infty} \frac{1}{(1+1 / n)^{2}} \\
& =\frac{|2 x+1|}{5}
\end{aligned}
$$

By the ratio test, the series converges absolutely when

$$
\frac{|2 x+1|}{5}<1
$$

or $|x+1 / 2|<5 / 2$.

- Therefore, $a=-1 / 2$ and $R=5 / 2$. The series converges absolutely if $-3<x<2$ and diverges if $-\infty<x<-3$ or $2<x<\infty$.
- At the endpoints $x=-3, x=2$ of the interval of convergence, the series become

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

These are absolutely convergent p-series, so the series converges absolutely at $x=-3,2$.
2. Let

$$
\vec{u}=2 \vec{i}-\vec{j}+3 \vec{k}, \quad \vec{v}=-\vec{i}+2 \vec{j}+2 \vec{k} .
$$

Compute: (a) $|\vec{u}|$; (b) $|\vec{v}|$; (c) the angle θ between \vec{u}, \vec{v} (you can express it as an inverse trigonometric function); (d) the projection $\operatorname{proj}_{\vec{v}} \vec{u}$ of \vec{u} in the direction of \vec{v}.

Solution.

- (a) $|\vec{u}|=\sqrt{2^{2}+(-1)^{2}+3^{2}}=\sqrt{14}$.
- (b) $|\vec{v}|=\sqrt{(-1)^{2}+2^{2}+2^{2}}=3$.
- (c) We have

$$
\cos \theta=\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|},
$$

and

$$
\vec{u} \cdot \vec{v}=2 \cdot(-1)+(-1) \cdot 2+3 \cdot 2=2 .
$$

Hence $\cos \theta=2 /(3 \sqrt{14})$ and

$$
\theta=\cos ^{-1}\left(\frac{2}{3 \sqrt{14}}\right)
$$

- (d) We have

$$
\operatorname{proj}_{\vec{v}} \vec{u}=\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^{2}} \vec{v} .
$$

Hence

$$
\operatorname{proj}_{\vec{v}} \vec{u}=\frac{2}{9}(-\vec{i}+2 \vec{j}+2 \vec{k})=-\frac{2}{9} \vec{i}+\frac{4}{9} \vec{j}+\frac{4}{9} \vec{k} .
$$

3. (a) Find the area of the triangle with vertices $P(-2,2,0), Q(0,1,-1)$ and $R(-1,2,-2)$.
(b) Find a parametric equation for the line in which the planes $3 x-6 y-4 z=$ 15 and $6 x+y-2 z=5$ intersect.

Solution.

- (a) The area A of the triangle is half the area of the parallelogram spanned by the vectors given by any two sides of the triangle, and the area of the parallelogram is the magnitude of the cross product of the vectors. Hence,

$$
A=\frac{1}{2}|\overrightarrow{P Q} \times \overrightarrow{P R}| .
$$

(The use of any other pair of vectors would be fine and give the same answer.)

- We have

$$
\begin{aligned}
\overrightarrow{P Q} & =(0-(-2)) \vec{i}+(1-2) \vec{j}+(-1-0) \vec{k}=2 \vec{i}-\vec{j}-\vec{k}, \\
\overrightarrow{P R} & =(-1-(-2)) \vec{i}+(2-2) \vec{j}+(-2-0) \vec{k}=\vec{i}-2 \vec{k},
\end{aligned}
$$

and

$$
\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{rrr}
\vec{i} & \vec{j} & \vec{k} \\
2 & -1 & -1 \\
1 & 0 & -2
\end{array}\right|=2 \vec{i}+3 \vec{j}+\vec{k}
$$

Hence,

$$
A=\frac{1}{2} \sqrt{2^{2}+3^{2}+1^{2}}=\frac{\sqrt{14}}{2} .
$$

- (b) Normal vectors to the planes are

$$
\vec{n}_{1}=3 \vec{i}-6 \vec{j}-4 \vec{k}, \quad \vec{n}_{2}=6 \vec{i}+\vec{j}-2 \vec{k} .
$$

(We read off the components of the normal vector from the coefficients of x, y, z in the Cartesian equation.) A direction vector of the line is therefore

$$
\vec{u}=\vec{n}_{1} \times \overrightarrow{n_{2}}=\left|\begin{array}{rrr}
\vec{i} & \vec{j} & \vec{k} \\
3 & -6 & -4 \\
6 & 1 & -2
\end{array}\right|=16 \vec{i}-18 \vec{j}+39 \vec{k} .
$$

- To find a point on the line, we look for the coordinates $\left(x_{0}, y_{0}, 0\right)$ of the point on the intersection of the planes with $z=0$, say. (This isn't the only way to find a point on the line - any point on the line will do.) Then

$$
3 x_{0}-6 y_{0}=15, \quad 6 x_{0}+y_{0}=5 .
$$

The solution of this linear system is $x_{0}=15 / 13, y_{0}=-25 / 13$. Thus the position vector of a point on the line is

$$
\vec{r}_{0}=\frac{15}{13} \vec{i}-\frac{25}{13} \vec{j}
$$

then the vector form of a parametric equation for the line is

$$
\vec{r}(t)=\frac{15}{13} \vec{i}-\frac{25}{13} \vec{j}+t(16 \vec{i}-18 \vec{j}+39 \vec{k}) .
$$

- The coordinate form of the parametric equation is

$$
x=\frac{15}{13}+16 t, \quad y=-\frac{25}{13}-18 t, \quad z=39 t
$$

4. Let

$$
f(x, y)=e^{x y} \ln (y)
$$

Compute the partial derivatives $f_{x}, f_{y}, f_{x x}, f_{x y}$ and $f_{y y}$. (You do NOT need to simplify your answers.)

Solution.

- The first-order derivatives are

$$
\begin{aligned}
& f_{x}=y e^{x y} \ln y, \\
& f_{y}=x e^{x y} \ln y+\frac{e^{x y}}{y} .
\end{aligned}
$$

- The second-order derivatives are

$$
\begin{aligned}
f_{x x} & =\frac{\partial}{\partial x}\left(y e^{x y} \ln y\right)=y^{2} e^{x y} \ln y, \\
f_{x y} & =\frac{\partial}{\partial y}\left(y e^{x y} \ln y\right)=e^{x y} \ln y+x y e^{x y} \ln y+\frac{y e^{x y}}{y} \\
f_{y y} & =\frac{\partial}{\partial y}\left(x e^{x y} \ln y+\frac{e^{x y}}{y}\right) \\
& =x^{2} e^{x y} \ln y+\frac{x e^{x y}}{y}+\frac{x e^{x y}}{y}-\frac{e^{x y}}{y^{2}} .
\end{aligned}
$$

- Alternatively, by the equality of mixed partial derivatives $f_{x y}=f_{y x}$, we could compute $f_{x y}$ from

$$
f_{x y}=\frac{\partial}{\partial x}\left(x e^{x y} \ln y+\frac{e^{x y}}{y}\right)=e^{x y} \ln y+x y e^{x y} \ln y+\frac{y e^{x y}}{y} .
$$

5. (a) Find the Taylor polynomial $P_{2}(x)$ of order 2 centered at $x=0$ for the function $f(x)=e^{-x^{2}}$.
(b) Use Taylor's theorem with remainder to estimate the maximum error $\left|f(x)-P_{2}(x)\right|$ for $0 \leq x \leq 1$.
(c) Use the results of (a) and (b) to obtain an approximate value for the integral

$$
\int_{0}^{1} e^{-x^{2}} d x
$$

and estimate the maximum error in your approximate value for the integral.

Solution.

- (a) Computing the first three derivatives of $f(x)$, we get that

$$
\begin{aligned}
f^{\prime}(x) & =-2 x e^{-x^{2}} \\
f^{\prime \prime}(x) & =(-2 x)(-2 x) e^{-x^{2}}-2 e^{-x^{2}} \\
& =\left(4 x^{2}-2\right) e^{-x^{2}} \\
f^{\prime \prime \prime}(x) & =(-2 x)\left(4 x^{2}-2\right) e^{-x^{2}}+8 x e^{-x^{2}} \\
& =\left(12 x-8 x^{3}\right) e^{-x^{2}} .
\end{aligned}
$$

- The first few Taylor coefficients of $f(x)$ at $x=0$ are therefore

$$
\begin{aligned}
& c_{0}=f(0)=1, \\
& c_{1}=f^{\prime}(0)=0, \\
& c_{2}=\frac{f^{\prime \prime}(0)}{2!}=\frac{-2}{2}=-1,
\end{aligned}
$$

so the second order Taylor polynomial of $f(x)$ is given by

$$
P_{2}(x)=1-x^{2} .
$$

- (b) By Taylor's theorem with remainder, we have

$$
e^{-x^{2}}=P_{2}(x)+R_{2}(x)
$$

where

$$
R_{2}(x)=\frac{f^{(3)}(c)}{3!} x^{3}, \quad f^{(3)}(c)=4 c\left(3-2 c^{2}\right) e^{-c^{2}}
$$

for some $0<c<x$.

- If $0 \leq x \leq 1$, then $0<c<1$, in which case $f^{(3)}(c) \geq 0$, and there exists $M>0$ such that

$$
0 \leq f^{(3)}(c) \leq M \quad \text { for all } 0 \leq c \leq 1
$$

For example, if $0 \leq c \leq 1$, then

$$
\begin{aligned}
& c \leq 1, \quad 3-2 c^{2} \leq 3, \quad e^{-c^{2}} \leq 1 \\
& f^{(3)}(c)=4 c\left(3-2 c^{2}\right) e^{-c^{2}} \leq 4 \cdot 1 \cdot 3 \cdot 1,
\end{aligned}
$$

so we can take $M=12$. (If fact, as shown below, we can take $M=4$.)

- Then

$$
\begin{equation*}
0 \leq e^{-x^{2}}-P_{2}(x) \leq R_{2}(x) \tag{1}
\end{equation*}
$$

where

$$
0 \leq R_{2}(x) \leq \frac{1}{3!} M x^{3} \quad \text { for all } 0 \leq x \leq 1
$$

- (c) From (1), we have that

$$
0 \leq \int_{0}^{1} e^{-x^{2}} d x-\int_{0}^{1} P_{2}(x) d x \leq \int_{0}^{1} R_{2}(x) d x
$$

- The approximate value for the integral is

$$
\int_{0}^{1} P_{2}(x) d x=\int_{0}^{1}\left(1-x^{2}\right) d x=\left[x-\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{2}{3}
$$

and the error is bounded by

$$
\int_{0}^{1} R_{2}(x) d x \leq \frac{M}{3!} \int_{0}^{1} x^{3} d x=\frac{M}{4!}
$$

- If we take $M=12$, then $M / 4!=1 / 2$, and we get that

$$
\frac{2}{3} \leq \int_{0}^{1} e^{-x^{2}} d x \leq \frac{2}{3}+\frac{1}{2}=\frac{7}{6}
$$

If we take $M=4$, then $M / 4!=1 / 6$, and we get that

$$
\frac{2}{3} \leq \int_{0}^{1} e^{-x^{2}} d x \leq \frac{2}{3}+\frac{1}{6}=\frac{5}{6}
$$

- A graph of $f^{(3)}(c)$ is shown in the figure. We find that

$$
f^{(4)}(c)=\left(4 c^{4}-12 c^{2}+3\right) e^{-c^{2}}
$$

which is zero when $4 c^{4}-12 c^{2}+3=0$. The function $f^{(3)}$ attains its maximum value on $0 \leq c \leq 1$ at the root $0 \leq c_{0} \leq 1$ of this polynomial, where

$$
c_{0}=\sqrt{\frac{3-\sqrt{6}}{2}} \approx 0.5246, \quad f^{(3)}\left(c_{0}\right) \approx 3.9036<4
$$

Remark. The integral of $e^{-x^{2}}$ can't be expressed in terms of elementary functions, but it can be expressed in terms of the error function erf (so called because it gives the probability of a normally distributed random measurement taking values inside some interval about its mean) as

$$
\int_{0}^{1} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2} \operatorname{erf}(1) \approx 0.7468
$$

6. Suppose that the functions $f(x), g(x)$ have the Taylor series expansions at zero, up to second degree terms, given by

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots, \quad g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots
$$

(a) According to Taylor's theorem, how are a_{0}, a_{1}, a_{2} given in terms of f and its derivatives and b_{0}, b_{1}, b_{2} in terms of g and its derivative?
(b) Find the Taylor series for $h(x)=f(x) g(x)$ at zero, up to second degree terms, by multiplying the Taylor series for $f(x)$ and $g(x)$.
(c) Use the product rule to compute $h^{\prime}(x), h^{\prime \prime}(x)$ in terms of the derivatives of $f(x), g(x)$. Show that the use of these expressions in Taylor's theorem for $h(x)$ gives the same series as the one you found in (b).

Solution.

- (a) By Taylor's theorem

$$
\begin{array}{lll}
a_{0}=f(0), & a_{1}=f^{\prime}(0), & a_{2}=\frac{f^{\prime \prime}(0)}{2!},
\end{array} \quad \ldots,
$$

- (b) Multiplying the Taylor series of f and g, we get

$$
\begin{aligned}
h(x) & =\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+\ldots\right) \\
& =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\ldots .
\end{aligned}
$$

Thus,

$$
h(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots
$$

where

$$
c_{0}=a_{0} b_{0}, \quad c_{1}=a_{0} b_{1}+a_{1} b_{0}, \quad c_{2}=a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}, \quad \ldots
$$

- (c) By the product rule, we have

$$
h^{\prime}=f g^{\prime}+f^{\prime} g, \quad h^{\prime \prime}=f g^{\prime \prime}+2 f^{\prime} g^{\prime}+f^{\prime \prime} g .
$$

The first few Taylor coefficients of h at 0 are therefore

$$
\begin{aligned}
c_{0} & =h(0) \\
& =f(0) g(0) \\
& =a_{0} b_{0}, \\
c_{1} & =h^{\prime}(0) \\
& =f(0) g^{\prime}(0)+f^{\prime}(0) g(0) \\
& =a_{0} b_{1}+a_{1} b_{0}, \\
c_{2} & =\frac{h^{\prime \prime}(0)}{2!} \\
& =\frac{1}{2}\left[f(0) g^{\prime \prime}(0)+2 f^{\prime}(0) g^{\prime}(0)+f^{\prime \prime}(0) g(0)\right] \\
& =f(0) \frac{g^{\prime \prime}(0)}{2!}+f^{\prime}(0) g^{\prime}(0)+\frac{f^{\prime \prime}(0)}{2!} g(0) \\
& =a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0} .
\end{aligned}
$$

These expressions agree with what we found by multiplication of the Taylor series.

