
Calculus: Final Solutions
Math 21D, Fall 2019

1. [20 pts] Let R be the triangular region in the (x, y)-plane with vertices
(0, 0), (2, 1), (3, 0). Sketch R and evaluate the double integral∫∫

R

x dxdy.

Solution.

• The region R can be described by 0 ≤ y ≤ 1, 2y ≤ x ≤ 3− y, so∫∫
R

x dxdy =

∫ 1

0

∫ 3−y

2y

x dxdy

=
1

2

∫ 1

0

[
(3− y)2 − 4y2

]
dy

=
1

2

∫ 1

0

[
9− 6y − 3y2

]
dy

=
1

2

[
9y − 3y2 − y3

]1
0

=
5

2
.

1



2. [20 pts] Let D be the volume in (x, y, z)-space with x2 + y2 ≤ 1 and
1 ≤ z ≤ 3. Evaluate the triple integral∫∫∫

D

(
x2 + y2 + z2

)
dxdydz.

Solution.

• We use cylindrical coordinates (r, θ, z). The volume D is described by
r2 ≤ 1 and 1 ≤ z ≤ 3. In addition, dV = rdrdθdz and x2 + y2 = r2, so∫∫∫

D

(
x2 + y2 + z2

)
dxdydz =

∫ 3

1

∫ 2π

0

∫ 1

0

(
r2 + z2

)
rdrdθdz

= 2π

∫ 3

1

[
1

4
r4 +

1

2
r2z2

]1
0

dz

= 2π

∫ 3

1

(
1

4
+

1

2
z2
)
dz

= 2π

[
1

4
z +

1

6
z3
]3
1

=
29π

3
.
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3. [20 pts] (a) Suppose that a, b > 0 are constants and define a transformation
from the (u, v)-plane to the (x, y) plane by x = au, y = bv. What is the
Jacobian of this transformation?

(b) Let R be elliptical region in the (x, y)-plane given by

x2

a2
+
y2

b2
≤ 1.

What is the corresponding region G in the (u, v)-plane?

(c) Use the change of variables in (a) to evaluate the double integral∫∫
R

(
x2

a2
+
y2

b2

)1/2

dxdy

Solution.

• (a) The Jacobian is

J =

∣∣∣∣ xu xv
yu yv

∣∣∣∣ =

∣∣∣∣ a 0
0 b

∣∣∣∣ = ab

• (b) The region G in the (u, v) plane is the unit disc u2 + v2 ≤ 1.

• (c) We have∫∫
R

(
x2

a2
+
y2

b2

)1/2

dxdy = ab

∫∫
G

(
u2 + v2

)1/2
dudv.

To evaluate this integral, we use polar coordinates (r, θ) in the (u, v)-
plane, which gives∫∫

G

(
u2 + v2

)1/2
dudv =

∫ 2π

0

∫ 1

0

r · rdrdθ = 2π

[
1

3
r3
]1
0

=
2π

3
,

so ∫∫
R

(
x2

a2
+
y2

b2

)1/2

dxdy =
2πab

3
.
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4. [20 pts] (a) State Green’s theorem.

(b) Let C be the closed rectangular curve in the (x, y)-plane, oriented counter-
clockwise, that consists of the line segments from (0, 0) to (2, 0), from (2, 0)
to (2, 3), from (2, 3) to (0, 3), and from (0, 3) to (0, 0). Use Green’s theorem
to evaluate the line integral∮

C

xey/3 dx+ y2ex/2 dy.

Solution.

• (a) Green’s theorem: If M(x, y) and N(x, y) are continuously differen-
tiable functions defined on a bounded region R in the (x, y)-plane with
positively oriented, piecewise smooth boundary curve C, then∫∫

R

(
∂N

∂x
− ∂M

∂y

)
dxdy =

∮
C

Mdx+Ndy.

• (b) The region R enclosed by C is the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 3.
Taking M(x, y) = xey/3 and N(x, y) = y2ex/2 in Green’s theorem, we
get that∮
C

xey/3 dx+ y2ex/2 dy =

∫∫
R

∂

∂x

(
y2ex/2

)
− ∂

∂y

(
xey/3

)
dxdy

=

∫ 3

0

∫ 2

0

(
1

2
y2ex/2 − 1

3
xey/3

)
dxdy

=

∫ 2

0

1

2
ex/2 dx ·

∫ 3

0

y2 dy −
∫ 2

0

x dx ·
∫ 3

0

1

3
ey/3 dy

=
[
ex/2

]2
0
·
[

1

3
y3
]3
0

−
[

1

2
x2
]2
0

·
[
ey/3
]3
0

= 9(e− 1)− 2(e− 1)

= 7(e− 1).
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5. [20 pts] A particle moves along a helical path

r(t) = (a cos t)i + (a sin t)j + (bt)k, 0 ≤ t ≤ 2π,

where a, b > 0 are constants, in a force-field

F(x, y, z) = −yi + xj + zk.

Compute the work done by the force on the particle.

Solution.

• The work W is given by the line integral

W =

∫
C

F · dr =

∫ 2π

0

F(r(t)) · r′(t) dt.

We have

F(r(t)) = −a sin ti + a cos tj + btk,

r′(t) = −a sin ti + a cos tj + bk,

F(r(t)) · r′(t) = a2 sin2 t+ a2 cos2 t+ b2t = a2 + b2t.

It follows that

W =

∫ 2π

0

a2 + b2t dt =

[
a2t+

1

2
b2t2
]2π
0

= 2πa2 + 2π2b2.

5



6. [20 pts] Let

F(x, y, z) = [sin(x+ y) + sin(y + z)] i + [sin(x+ y) + x cos(y + z)] j

+ [x cos(y + z) + cos z]k

(a) Find a potential f(x, y, z) such that F = ∇f .

(b) What is ∇× F?

Solution.

• (a) If ∇f = F, then by equating x-components, we must have

fx(x, y, z) = sin(x+ y) + sin(y + z),

and an integration with respect to x implies that

f(x, y, z) = − cos(x+ y) + x sin(y + z) + a(y, z)

where a(y, z) is a function of integration.

• Equating y-components in ∇f = F, and using this expression for f , we
get that

sin(x+ y) + x cos(y + z) + ay(y, z) = sin(x+ y) + x cos(y + z),

so ay = 0 and a = a(z) depends only on z.

• Finally, equating z-components and using the previous expression for
f , we have

x cos(y + z) + a′(z) = x cos(y + z) + cos z,

so a′(z) = cos z and a(z) = sin z+C, where C is a constant of integra-
tion. Hence F = ∇f where

f(x, y, z) = − cos(x+ y) + x sin(y + z) + sin z + C.

(b) We have ∇× F = 0, since the curl of a gradient is always 0.
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7. [20 pts] Let S be the sphere x2 +y2 + z2 = a2 of radius a > 0 and F = zk.

(a) What is the unit outward normal n to S? Sketch a picture of S, the
outward normal n, and the vector field F on S. Do you expect the outward
flux of F across S to be positive, negative, or zero?

(b) Use a parametrization of S by spherical polar angles (φ, θ) to evaluate
the outward flux ∫∫

S

F · n dσ

of F across S. Hint. You can use the surface element dσ = a2 sinφ dφdθ.

Solution.

• (a) The surface S is a level surface of the function x2 + y2 + z2, so a
normal vector is

∇(x2 + y2 + z2) = 2xi + 2yj + 2zk.

Dividing by the magnitude of this vector, we get the unit normal vector
on S

n =
xi + yj + zk√
x2 + y2 + z2

=
1

a
(xi + yj + zk)

which is pointing outwards.

• The outward normal component of F is positive (and zero for z = 0),
so the outward flux of F across S is positive.

• (b) We have z = a cosφ on S and

F · n =
z2

a
= a cos2 φ.

Using a substitution u = cosφ, it follows that∫∫
S

F · n dσ =

∫ 2π

0

∫ π

0

a cos2 φ · a2 sinφdφdθ

= 2πa3
∫ π

0

cos2 φ sinφdφ

= 2πa3
∫ 1

−1
u2du

=
4πa3

3
.
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8. [20 pts] Suppose that F(x, y, z) = M(x, y, z)i + N(x, y, z)j + P (x, y, z)k
is a twice continuously differentiable vector field.

(a) Define ∇ · F.

(b) Define ∇× F. Write out the components of ∇× F explicitly.

(c) Show that ∇ · (∇× F) = 0.

(d) Suppose that D is a volume in space with boundary surface S. What does
the divergence theorem tell you about the flux integral

∫∫
S
(∇× F) · n dσ?

Solution.

• (a) We have ∇ · F = Mx +Ny + Pz.

• (b) We have

∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
M N P

∣∣∣∣∣∣
= (Py −Nz)i + (Mz − Px)j + (Nx −My)k

• (c) We compute that

∇ · (∇× F) =
∂

∂x
(Py −Nz) +

∂

∂y
(Mz − Px) +

∂

∂z
(Nx −My)

= Pyx −Nzx +Mzy − Pxy +Nxz −Myz

= 0,

where all the terms cancel because of the equality of mixed partial
derivatives for twice continuously differentiable functions (Pyx = Pxy
and so on).

• (d) Using the divergence theorem and the result in (c), we have∫∫
S

(∇× F) · n dσ =

∫∫∫
D

∇ · (∇× F) dV = 0,

meaning that if ∇× F is defined and continuous in a bounded region
D enclosed by a (piecewise smooth) surface S, then the flux of ∇× F
through S is zero.
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9. [20 pts] (a) State Stokes theorem.

(b) Suppose that the surface S1 is the upper hemisphere x2+y2+z2 = 1, z ≥ 0
and S2 is the lower hemisphere x2+y2+z2 = 1, z ≤ 0, oriented by the outward
unit normal n on x2+y2+z2 = 1. If F(x, y, z) is a (continuously differentiable)
vector field, what does Stokes theorem tell you about the relationship between
the flux integrals

∫∫
S1

(∇× F) · n dσ and
∫∫

S2
(∇× F) · n dσ?

(c) Does the relationship in (b) hold for flux integrals
∫∫

S1
G · n dσ and∫∫

S2
G · n dσ of general vector fields G?

Solution.

• (a) If S is a piecewise smooth, oriented surface with piecewise smooth,
positively oriented boundary curve C and F is a continuously differen-
tiable vector field on S, then∫∫

S

(∇× F) · n dσ =

∮
C

F ·T ds,

meaning that the flux of ∇× F across S is equal to the circulation of
F around C.

• (b) The boundary curve of S1 is the unit circle C1 : x2 + y2 = 1 in the
(x, y)-plane. By the right-hand rule, the positive orientation of C1 with
respect to the unit normal on S1, which is upward, is counter-clockwise.
By Stokes theorem,∫∫

S1

(∇× F) · n dσ =

∮
C1

F ·T ds.

• The boundary curve of S2 is the unit circle C2 : x2 + y2 = 1 in the
(x, y)-plane. By the right-hand rule, the positive orientation of C2 with
respect to the unit normal on S2, which is downward, is clockwise. By
Stokes theorem, ∫∫

S2

(∇× F) · n dσ =

∮
C2

F ·T ds.

• Since C1, C2 are the same curve with opposite orientations, it follows
that

∮
C1

= −
∮
C2

, so∫∫
S1

(∇× F) · n dσ = −
∫∫

S2

(∇× F) · n dσ.
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• (c) There is no such relation for general vector fields G. In fact, by
choosing G in one way on S1 and another way on S2, we could make
the flux integrals

∫∫
S1
G · n dσ and

∫∫
S2
G · n dσ have any values we

want.

Remark. If S = S1 + S2 is the entire unit sphere x2 + y2 + z2 = 1, with
outward unit normal n, then∫∫

S

(∇× F) · n dσ =

∫∫
S1

(∇× F) · n dσ +

∫∫
S2

(∇× F) · n dσ = 0,

so this result is consistent with the result in 8(d) for the flux of∇×F through
a closed surface S.
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