Calculus: Final Solutions
Math 21D, Fall 2019

1. [20 pts] Let R be the triangular region in the (z,y)-plane with vertices
0,0), (2,1), (3,0). Sketch R and evaluate the double integral

// x dxdy.
R

Solution.

e The region R can be described by 0 <y <1, 2y <z <3 -y, so
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2. [20 pts] Let D be the volume in (z,y, z)-space with x? + y* < 1 and
1 < z < 3. Evaluate the triple integral

/// (:L‘2 + 1y + 22) dzdydz.
D

Solution.

e We use cylindrical coordinates (r, 6, z). The volume D is described by
r? <1and 1< z < 3. In addition, dV = rdrdfdz and z* + y* = r?, so
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3. [20 pts] (a) Suppose that a,b > 0 are constants and define a transformation
from the (u,v)-plane to the (z,y) plane by x = au, y = bv. What is the
Jacobian of this transformation?

(b) Let R be elliptical region in the (x,y)-plane given by
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What is the corresponding region G in the (u,v)-plane?

(c) Use the change of variables in (a) to evaluate the double integral
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Solution.

e (a) The Jacobian is
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e (b) The region G in the (u,v) plane is the unit disc u* + v < 1.

e (c) We have
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To evaluate this integral, we use polar coordinates (r,#) in the (u,v)-
plane, which gives
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4. [20 pts| (a) State Green’s theorem.

(b) Let C' be the closed rectangular curve in the (z, y)-plane, oriented counter-
clockwise, that consists of the line segments from (0,0) to (2,0), from (2,0)
o (2,3), from (2,3) to (0,3), and from (0, 3) to (0,0). Use Green’s theorem
to evaluate the line integral

j{ ze¥3 dx + e dy.
c

Solution.

e (a) Green’s theorem: If M(x,y) and N(z,y) are continuously differen-
tiable functions defined on a bounded region R in the (z,y)-plane with
positively oriented, piecewise smooth boundary curve C, then

// (G_N_Q_M) dxdy:j{de+Ndy.
C

e (b) The region R enclosed by C'is the rectangle 0 < x <2, 0 <y < 3.
Taking M (z,y) = xe¥/3 and N(z,y) = y?e*/? in Green’s theorem, we
get that
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5. [20 pts] A particle moves along a helical path
r(t) = (acost)i+ (asint)j + (bt)k, 0<t<2m,
where a,b > 0 are constants, in a force-field
F(zr,y,2) = —yi+ zj + zk.
Compute the work done by the force on the particle.

Solution.

e The work W is given by the line integral

W:/OF'dr:/OQﬂF(r(t))~r’(t)dt.
We have

F(r(t)) = —asinti + acostj + btk,
r'(t) = —asinti+ acostj + bk,
F(r(t)) - r'(t) = a®sin®*t + a® cos® t + bt = a® + b*t.

It follows that
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6. [20 pts] Let

F(z,y,2) = [sin(x + y) + sin(y + z)] i+ [sin(z + y) + x cos(y + 2)] ]
+ [z cos(y + z) 4+ cos 2] k

(a) Find a potential f(z,y, z) such that F = V f.
(b) What is V x F?

Solution.
e (a) If Vf =F, then by equating xz-components, we must have
fe(z,y, 2) = sin(z + y) + sin(y + 2),
and an integration with respect to x implies that
f(x,y,2) = —cos(z +y) + xsin(y + 2) + a(y, 2)
where a(y, z) is a function of integration.

e Equating y-components in V f = F, and using this expression for f, we
get that

sin(z + y) + x cos(y + 2) + a,(y, 2) = sin(x + y) + z cos(y + z),
so a, = 0 and a = a(z) depends only on z.

e Finally, equating z-components and using the previous expression for
f, we have

zcos(y + 2) +ad'(z) = zcos(y + z) + cos 2,

so a/(z) = cos z and a(z) = sin z + C, where C is a constant of integra-
tion. Hence F = V f where

flx,y,z) = —cos(x +y) + zsin(y + z) +sinz + C.

(b) We have V x F = 0, since the curl of a gradient is always 0.



7. [20 pts] Let S be the sphere 2* +y*+ 22 = a? of radius @ > 0 and F = zk.

(a) What is the unit outward normal n to S? Sketch a picture of S, the
outward normal n, and the vector field F on S. Do you expect the outward
flux of F across S to be positive, negative, or zero?

(b) Use a parametrization of S by spherical polar angles (¢, 0) to evaluate

the outward flux
/ / F -ndo
s

of F across S. HINT. You can use the surface element do = a? sin ¢ dgdf.

Solution.

e (a) The surface S is a level surface of the function 2% + y? + 22, so a
normal vector is

V(x? + 9 + 2*) = 2xi + 2yj + 2zk.

Dividing by the magnitude of this vector, we get the unit normal vector

on S

xi+yj + 2k 1 . .
Y = — (zi+yj + zk)
Vai+yr+22 a

which is pointing outwards.

e The outward normal component of F is positive (and zero for z = 0),
so the outward flux of F across S is positive.

e (b) We have z = acos¢ on S and

2
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Using a substitution u = cos ¢, it follows that
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8. [20 pts] Suppose that F(x,y,2) = M(z,y,2)i+ N(z,y,2)j + P(z,y, 2)k
is a twice continuously differentiable vector field.

(a) Define V - F.

(b) Define V x F. Write out the components of V x F explicitly.

(c) Show that V- (V x F) = 0.

(d) Suppose that D is a volume in space with boundary surface S. What does
the divergence theorem tell you about the flux integral [[(V x F)-ndo?

Solution.
e (a) We have V-F = M, + N, + P..
e (b) We have
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e (c) We compute that
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where all the terms cancel because of the equality of mixed partial
derivatives for twice continuously differentiable functions (P, = P,
and so on).

e (d) Using the divergence theorem and the result in (c), we have

//S(VxF)-nda:///DV-(VxF)dV:O,

meaning that if V x F is defined and continuous in a bounded region
D enclosed by a (piecewise smooth) surface S, then the flux of V x F
through S is zero.



9. [20 pts] (a) State Stokes theorem.

(b) Suppose that the surface S; is the upper hemisphere z%+y?+22 =1, 2 > 0
and S is the lower hemisphere 22+y%+22 = 1, z < 0, oriented by the outward
unit normal n on x?+y*+22 = 1. If F(z, y, 2) is a (continuously differentiable)
vector field, what does Stokes theorem tell you about the relationship between
the flux integrals [f; (V x F)-ndo and [[ (V x F)-ndo?

(c¢) Does the relationship in (b) hold for flux integrals ffSl G - ndo and
[fs, G -ndo of general vector fields G?

Solution.

e (a) If S is a piecewise smooth, oriented surface with piecewise smooth,
positively oriented boundary curve C' and F is a continuously differen-
tiable vector field on S, then

//S(VXF)-nda:J(éF~Tds,

meaning that the flux of V x F across S is equal to the circulation of
F around C.

e (b) The boundary curve of S; is the unit circle Cy : % + y? = 1 in the
(x,y)-plane. By the right-hand rule, the positive orientation of C with
respect to the unit normal on S}, which is upward, is counter-clockwise.
By Stokes theorem,

//S(VXF)-nda:jé F-Tds.

e The boundary curve of Sy is the unit circle Cy : 22 + y?> = 1 in the
(x,y)-plane. By the right-hand rule, the positive orientation of Cy with
respect to the unit normal on Sy, which is downward, is clockwise. By

Stokes theorem,
// (VXF)-ndazjg F - Tds.
SQ C2

e Since (', (5 are the same curve with opposite orientations, it follows

that . = — ., , s0
/Ll(VxF)~nd0:—//52(V><F)-nda.
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e (c) There is no such relation for general vector fields G. In fact, by
choosing G in one way on S; and another way on S,, we could make
the flux integrals [f; G -ndo and [[; G -ndo have any values we
want.

Remark. If S = S; + 5, is the entire unit sphere 2 + y? + 22 = 1, with
outward unit normal n, then

//S(V><F)-nda://Sl(VxF).nda_i_//sz(vx]?)'nda:o,

so this result is consistent with the result in 8(d) for the flux of V x F through
a closed surface S.
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