Calculus: Final Solutions
 Math 21D, Fall 2019

1. [20 pts] Let R be the triangular region in the (x, y)-plane with vertices $(0,0),(2,1),(3,0)$. Sketch R and evaluate the double integral

$$
\iint_{R} x d x d y
$$

Solution.

- The region R can be described by $0 \leq y \leq 1,2 y \leq x \leq 3-y$, so

$$
\begin{aligned}
\iint_{R} x d x d y & =\int_{0}^{1} \int_{2 y}^{3-y} x d x d y \\
& =\frac{1}{2} \int_{0}^{1}\left[(3-y)^{2}-4 y^{2}\right] d y \\
& =\frac{1}{2} \int_{0}^{1}\left[9-6 y-3 y^{2}\right] d y \\
& =\frac{1}{2}\left[9 y-3 y^{2}-y^{3}\right]_{0}^{1} \\
& =\frac{5}{2}
\end{aligned}
$$

2. [20 pts] Let D be the volume in (x, y, z)-space with $x^{2}+y^{2} \leq 1$ and $1 \leq z \leq 3$. Evaluate the triple integral

$$
\iiint_{D}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z
$$

Solution.

- We use cylindrical coordinates (r, θ, z). The volume D is described by $r^{2} \leq 1$ and $1 \leq z \leq 3$. In addition, $d V=r d r d \theta d z$ and $x^{2}+y^{2}=r^{2}$, so

$$
\begin{aligned}
\iiint_{D}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z & =\int_{1}^{3} \int_{0}^{2 \pi} \int_{0}^{1}\left(r^{2}+z^{2}\right) r d r d \theta d z \\
& =2 \pi \int_{1}^{3}\left[\frac{1}{4} r^{4}+\frac{1}{2} r^{2} z^{2}\right]_{0}^{1} d z \\
& =2 \pi \int_{1}^{3}\left(\frac{1}{4}+\frac{1}{2} z^{2}\right) d z \\
& =2 \pi\left[\frac{1}{4} z+\frac{1}{6} z^{3}\right]_{1}^{3} \\
& =\frac{29 \pi}{3}
\end{aligned}
$$

3. [20 pts] (a) Suppose that $a, b>0$ are constants and define a transformation from the (u, v)-plane to the (x, y) plane by $x=a u, y=b v$. What is the Jacobian of this transformation?
(b) Let R be elliptical region in the (x, y)-plane given by

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1
$$

What is the corresponding region G in the (u, v)-plane?
(c) Use the change of variables in (a) to evaluate the double integral

$$
\iint_{R}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{1 / 2} d x d y
$$

Solution.

- (a) The Jacobian is

$$
J=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|=\left|\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right|=a b
$$

- (b) The region G in the (u, v) plane is the unit disc $u^{2}+v^{2} \leq 1$.
- (c) We have

$$
\iint_{R}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{1 / 2} d x d y=a b \iint_{G}\left(u^{2}+v^{2}\right)^{1 / 2} d u d v
$$

To evaluate this integral, we use polar coordinates (r, θ) in the (u, v) plane, which gives

$$
\iint_{G}\left(u^{2}+v^{2}\right)^{1 / 2} d u d v=\int_{0}^{2 \pi} \int_{0}^{1} r \cdot r d r d \theta=2 \pi\left[\frac{1}{3} r^{3}\right]_{0}^{1}=\frac{2 \pi}{3}
$$

so

$$
\iint_{R}\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{1 / 2} d x d y=\frac{2 \pi a b}{3}
$$

4. [20 pts] (a) State Green's theorem.
(b) Let C be the closed rectangular curve in the (x, y)-plane, oriented counterclockwise, that consists of the line segments from $(0,0)$ to $(2,0)$, from $(2,0)$ to $(2,3)$, from $(2,3)$ to $(0,3)$, and from $(0,3)$ to $(0,0)$. Use Green's theorem to evaluate the line integral

$$
\oint_{C} x e^{y / 3} d x+y^{2} e^{x / 2} d y
$$

Solution.

- (a) Green's theorem: If $M(x, y)$ and $N(x, y)$ are continuously differentiable functions defined on a bounded region R in the (x, y)-plane with positively oriented, piecewise smooth boundary curve C, then

$$
\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\oint_{C} M d x+N d y
$$

- (b) The region R enclosed by C is the rectangle $0 \leq x \leq 2,0 \leq y \leq 3$. Taking $M(x, y)=x e^{y / 3}$ and $N(x, y)=y^{2} e^{x / 2}$ in Green's theorem, we get that

$$
\begin{aligned}
\oint_{C} x e^{y / 3} d x+y^{2} e^{x / 2} d y & =\iint_{R} \frac{\partial}{\partial x}\left(y^{2} e^{x / 2}\right)-\frac{\partial}{\partial y}\left(x e^{y / 3}\right) d x d y \\
& =\int_{0}^{3} \int_{0}^{2}\left(\frac{1}{2} y^{2} e^{x / 2}-\frac{1}{3} x e^{y / 3}\right) d x d y \\
& =\int_{0}^{2} \frac{1}{2} e^{x / 2} d x \cdot \int_{0}^{3} y^{2} d y-\int_{0}^{2} x d x \cdot \int_{0}^{3} \frac{1}{3} e^{y / 3} d y \\
& =\left[e^{x / 2}\right]_{0}^{2} \cdot\left[\frac{1}{3} y^{3}\right]_{0}^{3}-\left[\frac{1}{2} x^{2}\right]_{0}^{2} \cdot\left[e^{y / 3}\right]_{0}^{3} \\
& =9(e-1)-2(e-1) \\
& =7(e-1)
\end{aligned}
$$

5. [20 pts] A particle moves along a helical path

$$
\mathbf{r}(t)=(a \cos t) \mathbf{i}+(a \sin t) \mathbf{j}+(b t) \mathbf{k}, \quad 0 \leq t \leq 2 \pi
$$

where $a, b>0$ are constants, in a force-field

$$
\mathbf{F}(x, y, z)=-y \mathbf{i}+x \mathbf{j}+z \mathbf{k} .
$$

Compute the work done by the force on the particle.

Solution.

- The work W is given by the line integral

$$
W=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

We have

$$
\begin{aligned}
\mathbf{F}(\mathbf{r}(t)) & =-a \sin t \mathbf{i}+a \cos t \mathbf{j}+b t \mathbf{k}, \\
\mathbf{r}^{\prime}(t) & =-a \sin t \mathbf{i}+a \cos t \mathbf{j}+b \mathbf{k}, \\
\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) & =a^{2} \sin ^{2} t+a^{2} \cos ^{2} t+b^{2} t=a^{2}+b^{2} t .
\end{aligned}
$$

It follows that

$$
W=\int_{0}^{2 \pi} a^{2}+b^{2} t d t=\left[a^{2} t+\frac{1}{2} b^{2} t^{2}\right]_{0}^{2 \pi}=2 \pi a^{2}+2 \pi^{2} b^{2}
$$

6. [20 pts] Let

$$
\begin{aligned}
\mathbf{F}(x, y, z)= & {[\sin (x+y)+\sin (y+z)] \mathbf{i}+[\sin (x+y)+x \cos (y+z)] \mathbf{j} } \\
& +[x \cos (y+z)+\cos z] \mathbf{k}
\end{aligned}
$$

(a) Find a potential $f(x, y, z)$ such that $\mathbf{F}=\nabla f$.
(b) What is $\nabla \times \mathbf{F}$?

Solution.

- (a) If $\nabla f=\mathbf{F}$, then by equating x-components, we must have

$$
f_{x}(x, y, z)=\sin (x+y)+\sin (y+z)
$$

and an integration with respect to x implies that

$$
f(x, y, z)=-\cos (x+y)+x \sin (y+z)+a(y, z)
$$

where $a(y, z)$ is a function of integration.

- Equating y-components in $\nabla f=\mathbf{F}$, and using this expression for f, we get that

$$
\sin (x+y)+x \cos (y+z)+a_{y}(y, z)=\sin (x+y)+x \cos (y+z)
$$

so $a_{y}=0$ and $a=a(z)$ depends only on z.

- Finally, equating z-components and using the previous expression for f, we have

$$
x \cos (y+z)+a^{\prime}(z)=x \cos (y+z)+\cos z,
$$

so $a^{\prime}(z)=\cos z$ and $a(z)=\sin z+C$, where C is a constant of integration. Hence $\mathbf{F}=\nabla f$ where

$$
f(x, y, z)=-\cos (x+y)+x \sin (y+z)+\sin z+C
$$

(b) We have $\nabla \times \mathbf{F}=0$, since the curl of a gradient is always 0 .
7. [20 pts] Let S be the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ of radius $a>0$ and $\mathbf{F}=z \mathbf{k}$. (a) What is the unit outward normal \mathbf{n} to S ? Sketch a picture of S, the outward normal \mathbf{n}, and the vector field \mathbf{F} on S. Do you expect the outward flux of \mathbf{F} across S to be positive, negative, or zero?
(b) Use a parametrization of S by spherical polar angles (ϕ, θ) to evaluate the outward flux

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma
$$

of \mathbf{F} across S. Hint. You can use the surface element $d \sigma=a^{2} \sin \phi d \phi d \theta$.

Solution.

- (a) The surface S is a level surface of the function $x^{2}+y^{2}+z^{2}$, so a normal vector is

$$
\nabla\left(x^{2}+y^{2}+z^{2}\right)=2 x \mathbf{i}+2 y \mathbf{j}+2 z \mathbf{k} .
$$

Dividing by the magnitude of this vector, we get the unit normal vector on S

$$
\mathbf{n}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{1}{a}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})
$$

which is pointing outwards.

- The outward normal component of \mathbf{F} is positive (and zero for $z=0$), so the outward flux of \mathbf{F} across S is positive.
- (b) We have $z=a \cos \phi$ on S and

$$
\mathbf{F} \cdot \mathbf{n}=\frac{z^{2}}{a}=a \cos ^{2} \phi
$$

Using a substitution $u=\cos \phi$, it follows that

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma & =\int_{0}^{2 \pi} \int_{0}^{\pi} a \cos ^{2} \phi \cdot a^{2} \sin \phi d \phi d \theta \\
& =2 \pi a^{3} \int_{0}^{\pi} \cos ^{2} \phi \sin \phi d \phi \\
& =2 \pi a^{3} \int_{-1}^{1} u^{2} d u \\
& =\frac{4 \pi a^{3}}{3}
\end{aligned}
$$

8. [20 pts] Suppose that $\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}$ is a twice continuously differentiable vector field.
(a) Define $\nabla \cdot \mathbf{F}$.
(b) Define $\nabla \times \mathbf{F}$. Write out the components of $\nabla \times \mathbf{F}$ explicitly.
(c) Show that $\nabla \cdot(\nabla \times \mathbf{F})=0$.
(d) Suppose that D is a volume in space with boundary surface S. What does the divergence theorem tell you about the flux integral $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$?

Solution.

- (a) We have $\nabla \cdot \mathbf{F}=M_{x}+N_{y}+P_{z}$.
- (b) We have

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
M & N & P
\end{array}\right| \\
& =\left(P_{y}-N_{z}\right) \mathbf{i}+\left(M_{z}-P_{x}\right) \mathbf{j}+\left(N_{x}-M_{y}\right) \mathbf{k}
\end{aligned}
$$

- (c) We compute that

$$
\begin{aligned}
\nabla \cdot(\nabla \times \mathbf{F}) & =\frac{\partial}{\partial x}\left(P_{y}-N_{z}\right)+\frac{\partial}{\partial y}\left(M_{z}-P_{x}\right)+\frac{\partial}{\partial z}\left(N_{x}-M_{y}\right) \\
& =P_{y x}-N_{z x}+M_{z y}-P_{x y}+N_{x z}-M_{y z} \\
& =0
\end{aligned}
$$

where all the terms cancel because of the equality of mixed partial derivatives for twice continuously differentiable functions $\left(P_{y x}=P_{x y}\right.$ and so on).

- (d) Using the divergence theorem and the result in (c), we have

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iiint_{D} \nabla \cdot(\nabla \times \mathbf{F}) d V=0
$$

meaning that if $\nabla \times \mathbf{F}$ is defined and continuous in a bounded region D enclosed by a (piecewise smooth) surface S, then the flux of $\nabla \times \mathbf{F}$ through S is zero.
9. [20 pts] (a) State Stokes theorem.
(b) Suppose that the surface S_{1} is the upper hemisphere $x^{2}+y^{2}+z^{2}=1, z \geq 0$ and S_{2} is the lower hemisphere $x^{2}+y^{2}+z^{2}=1, z \leq 0$, oriented by the outward unit normal \mathbf{n} on $x^{2}+y^{2}+z^{2}=1$. If $\mathbf{F}(x, y, z)$ is a (continuously differentiable) vector field, what does Stokes theorem tell you about the relationship between the flux integrals $\iint_{S_{1}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$ and $\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$?
(c) Does the relationship in (b) hold for flux integrals $\iint_{S_{1}} \mathbf{G} \cdot \mathbf{n} d \sigma$ and $\iint_{S_{2}} \mathbf{G} \cdot \mathbf{n} d \sigma$ of general vector fields \mathbf{G} ?

Solution.

- (a) If S is a piecewise smooth, oriented surface with piecewise smooth, positively oriented boundary curve C and \mathbf{F} is a continuously differentiable vector field on S, then

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

meaning that the flux of $\nabla \times \mathbf{F}$ across S is equal to the circulation of F around C.

- (b) The boundary curve of S_{1} is the unit circle $C_{1}: x^{2}+y^{2}=1$ in the (x, y)-plane. By the right-hand rule, the positive orientation of C_{1} with respect to the unit normal on S_{1}, which is upward, is counter-clockwise. By Stokes theorem,

$$
\iint_{S_{1}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C_{1}} \mathbf{F} \cdot \mathbf{T} d s
$$

- The boundary curve of S_{2} is the unit circle $C_{2}: x^{2}+y^{2}=1$ in the (x, y)-plane. By the right-hand rule, the positive orientation of C_{2} with respect to the unit normal on S_{2}, which is downward, is clockwise. By Stokes theorem,

$$
\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\oint_{C_{2}} \mathbf{F} \cdot \mathbf{T} d s
$$

- Since C_{1}, C_{2} are the same curve with opposite orientations, it follows that $\oint_{C_{1}}=-\oint_{C_{2}}$, so

$$
\iint_{S_{1}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=-\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
$$

- (c) There is no such relation for general vector fields \mathbf{G}. In fact, by choosing G in one way on S_{1} and another way on S_{2}, we could make the flux integrals $\iint_{S_{1}} \mathbf{G} \cdot \mathbf{n} d \sigma$ and $\iint_{S_{2}} \mathbf{G} \cdot \mathbf{n} d \sigma$ have any values we want.

Remark. If $S=S_{1}+S_{2}$ is the entire unit sphere $x^{2}+y^{2}+z^{2}=1$, with outward unit normal \mathbf{n}, then

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{S_{1}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma+\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=0
$$

so this result is consistent with the result in $8(\mathrm{~d})$ for the flux of $\nabla \times \mathbf{F}$ through a closed surface S.

