Some Formulas You Should Know
 Math 21D, Fall 2019

Suppose $C: \mathbf{r}(t), a \leq t \leq b$ is a parametrized curve.

$$
\begin{array}{rlr}
\mathbf{v}(t) & =\mathbf{r}^{\prime}(t) & \begin{array}{r}
\text { velocity } \\
\mathbf{a}(t)
\end{array} \\
=\mathbf{r}^{\prime \prime}(t) & \text { acceleration } \\
L & =\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t & \text { arclength } \\
\mathbf{T}(t) & =\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|} & \text { unit tangent vector } \\
\kappa(t) & =\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\left|\frac{d \mathbf{T}}{d s}\right| & \\
\mathbf{N}(t) & =\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}=\frac{1}{\kappa} \frac{d \mathbf{T}}{d s} & \text { unit normal vector }
\end{array}
$$

Other formulas for curves will be given if needed. You should know how to define work, circulation, and flux as line integrals.

Green's theorem:

$$
\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\oint_{C}(M d x+N d y) .
$$

