MAT 21D, First Midterm October 18, 2019

Name: (Last) (First)

Signature:
Student ID Number:

- This room is only for students whose last name starts with a letter $A-R$. If your last name starts with a letter $S-Z$, you need to go to Hutchison 115 and take your exam there.
- There needs to be at least one empty seat between any two students.
- Ubiquitous internet access no longer makes bathroom breaks feasible. If you need to use the bathroom, please do so before the start of the exam.
- The exam set consists of 8 pages, including the cover sheet.
- This exam is closed book, no notes, no calculators, no phones or any other wireless devices.
- Use the back sides of the sheets if you need scratch paper.
- Show all your work to obtain full credit.

Problem	Points	Score
1	7	
2	7	
3	8	
4	9	
5	10	
6	9	
Total	50	

Problem 1

Let R be the region (in the $x y$-plane) bounded by the lines $x=1, x=2, y=0$, and $y=2 x$. (a) $[1$ Point $]$ Sketch R.
(b) [6 Points] Evaluate the integral

$$
\iint_{R} e^{1-x^{2}} d A
$$

Problem 2

[7 Points]

Integrate the function

$$
f(x, y)=\frac{2 x}{y}
$$

over the region R in the first quadrant (of the $x y$-plane) bounded by $y=1, y=2, y=2 x$, and $y=x^{2}$.

Problem 3

[8 Points]

Consider the region

$$
R=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 2, x \geq 0, y \geq 0\right\}
$$

Use polar coordinates to evaluate the integral

$$
\iint_{R}\left(\frac{x y}{x^{2}+y^{2}}+2 \cos \left(x^{2}+y^{2}\right)\right) d A
$$

Let D be the tetrahedron cut from the first octant (of $x y z$-space) by the plane $2 x+2 y+z=2$. Evaluate the integral

$$
\iiint_{D}(1-x) d V .
$$

Problem 5

Let D be the domain in the first octant (of $x y z$-space) bounded by the coordinate planes and the planes $x=1, y=1$, and $y+z=1$.
(a) [1 Point $]$ Sketch D.
(b) [3 Points] Find the volume of D by evaluating a suitable triple integral.
(c) [6 Points] Find the average value of the function

$$
f(x, y, z)=2 x-y+z
$$

over D.

Problem 6

A solid with constant density $\delta(x, y, z)=\delta>0$ occupies the domain

$$
D=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1,0 \leq z \leq 1-\sqrt{x^{2}+y^{2}}\right\} .
$$

(a) [5 Points] Use cylindrical coordinates to find the z-component \bar{z} of the centroid of D.
(b) [4 Points] Use cylindrical coordinates to find the moment of inertia of the solid about the z-axis.

