MAT 21D, Second Midterm November 8, 2019

Name: (Last) (First)

Signature:
Student ID Number:

- This room is only for students whose last name starts with a letter $A-R$. If your last name starts with a letter $S-Z$, you need to go to Hutchison 115 and take your exam there.
- There needs to be at least one empty seat between any two students.
- Ubiquitous internet access no longer makes bathroom breaks feasible. If you need to use the bathroom, please do so before the start of the exam.
- The exam set consists of 7 pages, including the cover sheet.
- This exam is closed book, no notes, no calculators, no phones or any other wireless devices.
- Use the back sides of the sheets if you need scratch paper.
- Show all your work to obtain full credit.

Problem	Points	Score
1	9	
2	8	
3	8	
4	8	
5	8	
6	9	
Total	50	

Problem 1

Let C be the curve given by the parametrization

$$
r(t)=\langle\sqrt{3} \sqrt{t}, \sin \sqrt{t},-\cos \sqrt{t}\rangle, \quad 1 \leq t \leq 9 .
$$

(a) [4 Points] Find the length of C.
(b) [2 Points] Find the unit tangent vector of C.
(c) $[3$ Points $]$ Find the curvature of C.

Problem 2

[8 Points]

Consider the domain

$$
D=\left\{(x, y, z) \mid 1 \leq x^{2}+y^{2}+z^{2} \leq 4, y \geq 0, z \geq 0\right\}
$$

in $x y z$-space. Evaluate the integral

$$
\iiint_{D} \frac{y z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} d V
$$

Problem 3

Let $a, b, c>0$ be positive constants. Consider the domain

$$
D=\left\{(x, y, z) \left\lvert\, 1 \leq \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 4\right., z \geq 0\right\}
$$

(a) [4 Points] Use the transformation $x=a u, y=b v, z=c w$ to rewrite the integral

$$
\iiint_{D} z^{2} d V
$$

as an integral over a domain G in $u v w$-space. (Do not yet evaluate the integral.)
(b) [4 Points] Use spherical coordinates to evaluate the integral over G from part (a).

Problem 4

Let C_{1} be the line segment joining the points $(0,0,0)$ and $(3,4,0)$, and let C_{2} be the line segment joining the points $(3,4,0)$ and $(3,1,4)$. Let $C=C_{1} \cup C_{2}$ be the curve starting in $(0,0,0)$ and ending in $(3,1,4)$, which is formed from C_{1} and C_{2}. Evaluate the integral

$$
\int_{C}\left(\frac{x^{2}}{3}-\frac{y z}{4}\right) d s
$$

Problem 5

A "thin" wire with variable density is modeled as a curve C with parametrization

$$
r(t)=\left\langle\sin t, \frac{t^{2}}{2}, \cos t\right\rangle, \quad 0 \leq t \leq 2 \pi
$$

The density of mass at the point (x, y, z) of C is $\delta(x, y, z)=\frac{1}{\sqrt{1+2 y}}$.
(a) [5 Points] Find the y-component \bar{y} of the center of mass of the wire.
(b) [3 Points] Find the moment of inertia of the wire about the x-axis.

Hint: $\quad \int_{0}^{2 \pi} \cos ^{2} t d t=\pi$

Problem 6

Let R denote the triangle in the $x y$-plane with vertices $(0,0),(3,-1)$, and $(-1,2)$.
(a) [4 Points] Find a linear transformation $x=g(u, v), y=h(u, v)$ that maps the three points $(0,0),(1,0)$, and $(0,1)$ in the $u v$-plane to the three points $(0,0),(3,-1)$, and $(-1,2)$ in the $x y$-plane.
(b) [5 Points] Use the transformation from (a) to rewrite the integral

$$
\iint_{R} \frac{x+3 y}{25} d A
$$

as an integral over a suitable region G in the $u v$-plane and evaluate that integral.

