Calculus

Math 21D, Fall 2019

Solutions: Sample Questions Midterm II

1. (a) Write down a parametric equation for the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

where $a, b>0$ are constants.
(b) Use the parametrization in (a) to obtain an integral for the arclength of the ellipse. Do not attempt to evaluate the integral.

Solution.

- (a) A natural parametrization is

$$
x=a \cos t, \quad y=b \sin t, \quad 0 \leq t \leq 2 \pi
$$

with position vector $\mathbf{r}(t)=(a \cos t) \mathbf{i}+(b \sin t) \mathbf{j}$.

- (b) The arclength L is

$$
\begin{aligned}
L & =\int_{0}^{2 \pi}\left|\mathbf{r}^{\prime}(t)\right| d t \\
& =\int_{0}^{2 \pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t} d t
\end{aligned}
$$

2. Let C be a curve parametrized by $-1<s<1$ with position vector

$$
\mathbf{r}(s)=\frac{1}{3}(1+s)^{3 / 2} \mathbf{i}+\frac{1}{3}(1-s)^{3 / 2} \mathbf{j}+\frac{1}{\sqrt{2}} s \mathbf{k} .
$$

(a) Show that s is an arclength parameter for the curve.
(b) Find the unit tangent vector \mathbf{T}.
(c) Find the unit normal vector \mathbf{N}.
(d) Find the binormal vector $\mathbf{B}=\mathbf{T} \times \mathbf{N}$.
(e) Find the curvature κ.

Solution.

- (a) The parameter s is an arclength parameter if $\left|\mathbf{r}^{\prime}(s)\right|=1$. We compute that

$$
\begin{aligned}
\mathbf{r}^{\prime}(s) & =\frac{1}{2}(1+s)^{1 / 2} \mathbf{i}-\frac{1}{2}(1-s)^{1 / 2} \mathbf{j}+\frac{1}{\sqrt{2}} \mathbf{k} \\
\left|\mathbf{r}^{\prime}(s)\right| & =\sqrt{\frac{1}{4}(1+s)+\frac{1}{4}(1-s)+\frac{1}{2}}=1
\end{aligned}
$$

- (b) Since \mathbf{r}^{\prime} is a unit vector, the unit tangent vector is $\mathbf{T}=\mathbf{r}^{\prime}$, or

$$
\mathbf{T}(s)=\frac{1}{2}(1+s)^{1 / 2} \mathbf{i}-\frac{1}{2}(1-s)^{1 / 2} \mathbf{j}+\frac{1}{\sqrt{2}} \mathbf{k}
$$

- (c) The unit normal vector is

$$
\mathbf{N}=\frac{\mathbf{T}^{\prime}}{\left|\mathbf{T}^{\prime}\right|}
$$

We have

$$
\begin{aligned}
\mathbf{T}^{\prime}(s) & =\frac{1}{4}(1+s)^{-1 / 2} \mathbf{i}+\frac{1}{4}(1-s)^{-1 / 2} \mathbf{j} \\
\left|\mathbf{T}^{\prime}(s)\right| & =\frac{1}{4} \sqrt{(1+s)^{-1}+(1-s)^{-1}}=\frac{1}{4} \sqrt{\frac{2}{1-s^{2}}}
\end{aligned}
$$

so, after some simplification,

$$
\mathbf{N}(s)=\frac{1}{\sqrt{2}}(1-s)^{1 / 2} \mathbf{i}+\frac{1}{\sqrt{2}}(1+s)^{1 / 2} \mathbf{j}
$$

- (d) We compute that

$$
\begin{aligned}
\mathbf{B}(s) & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{1}{2}(1+s)^{1 / 2} & -\frac{1}{2}(1-s)^{1 / 2} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}(1-s)^{1 / 2} & \frac{1}{\sqrt{2}}(1+s)^{1 / 2} & 0
\end{array}\right| \\
& =-\frac{1}{2}(1+s)^{1 / 2} \mathbf{i}+\frac{1}{2}(1-s)^{1 / 2} \mathbf{j}+\frac{1}{\sqrt{2}} \mathbf{k}
\end{aligned}
$$

- (e) Since $\mathbf{r}(s)$ is an arclength parametrization, we have

$$
\kappa(s)=\left|\mathbf{T}^{\prime}(s)\right|=\frac{1}{4} \sqrt{\frac{2}{1-s^{2}}} .
$$

3. Let

$$
\mathbf{F}(x, y, z)=y^{2} \mathbf{i}+\left(2 x y+z^{2}\right) \mathbf{j}+\left(2 y z+3 z^{2}\right) \mathbf{k}
$$

(a) Compute $\nabla \times \mathbf{F}$.
(b) Find a function f such that $\mathbf{F}=\nabla f$.
(c) Let C be the oriented line with initial point $(1,-1,2)$ and terminal point ($-1,1,-1$). Evaluate

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r} .
$$

(d) True or False: "The line integral of \mathbf{F} around any closed curve is zero."

Solution.

- (a) We have

$$
\begin{aligned}
\nabla \times \mathbf{F}(x, y, z) & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
y^{2} & 2 x y+z^{2} & 2 y z+3 z^{2}
\end{array}\right| \\
& =(2 z-2 z) \mathbf{i}-(0-0) \mathbf{j}+(2 y-2 y) \mathbf{k} \\
& =\mathbf{0}
\end{aligned}
$$

Since $\nabla \times \mathbf{F}=\mathbf{0}$ on a simply connected region, the vector field \mathbf{F} is conservative.

- (b) If $\mathbf{F}=\nabla f$, then by equating x-components and integrating, we get that

$$
\frac{\partial f}{\partial x}=y^{2}, \quad f(x, y, z)=x y^{2}+g(y, z)
$$

where $g(y, z)$ is a function of integration. Equating y-components, we get

$$
\frac{\partial f}{\partial y}=2 x y+z^{2}
$$

Using the previous expression for f in this equation, we get that

$$
2 x y+\frac{\partial g}{\partial y}=2 x y+z^{2}
$$

so, after simplifying and integrating, we get

$$
\frac{\partial g}{\partial y}=z^{2}, \quad g(y, z)=y z^{2}+h(z)
$$

where $h(z)$ is a function of integration. Finally, equating z-components

$$
\frac{\partial f}{\partial z}=2 y z+3 z^{2}
$$

and using the previous expressions for

$$
f(x, y, z)=x y^{2}+y z^{2}+h(z)
$$

we get that

$$
2 y z+\frac{d h}{d z}=2 y z+3 z^{2}
$$

so

$$
\frac{d h}{d z}=3 z^{2}, \quad h(z)=z^{3}+C
$$

where C is a constant of integration. It follows that

$$
f(x, y, z)=x y^{2}+y z^{2}+z^{3}+C .
$$

- (c) Since $\mathbf{F}=\nabla f$ is conservative,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(-1,1,-1)-f(1,-1,2)=(-1)-5=-6 .
$$

- (d) True. A vector field in some region D is conservative if and only if its line integral around every closed curve in D is zero.

4. (a) Let the curve C be the triangle in the (x, y)-plane with vertices $(0,0)$, $(1,3)$, and $(0,3)$, oriented counter-clockwise. Use Green's theorem to write the line integral

$$
I=\oint_{C} \sqrt{x+y} d x
$$

as an area integral over the interior R of C.
(b) Evaluate the area integral in (a). Compare your answer with your answer to Exercise 16, §16.2.

Solution.

- (a) An application of Green's theorem

$$
\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\oint_{C}(M d x+N d y)
$$

with $M=\sqrt{x+y}$ and $N=0$, gives

$$
\oint_{C} \sqrt{x+y} d x=-\iint_{R} \frac{\partial}{\partial y} \sqrt{x+y} d x d y=-\frac{1}{2} \iint_{R} \frac{1}{\sqrt{x+y}} d x d y .
$$

- The triangle R can be described by $0 \leq y \leq 3,0 \leq x \leq y / 3$, so

$$
\begin{aligned}
-\frac{1}{2} \iint_{R} \frac{1}{\sqrt{x+y}} d x d y & =-\frac{1}{2} \int_{0}^{3}\left(\int_{0}^{y / 3} \frac{1}{\sqrt{x+y}} d x\right) d y \\
& =-\frac{1}{2} \int_{0}^{3}[2 \sqrt{x+y}]_{0}^{y / 3} d y \\
& =\left(1-\frac{2}{\sqrt{3}}\right) \int_{0}^{3} \sqrt{y} d y \\
& =2 \sqrt{3}-4
\end{aligned}
$$

- The area and line integrals agree. If C_{1} is the line from $(0,0)$ to $(1,3)$, C_{2} is the line from $(1,3)$ to $(0,3)$, and C_{3} is the line from $(0,3)$ to $(0,0)$, one finds that

$$
\begin{aligned}
& \int_{C_{1}} \sqrt{x+y} d x=\frac{4}{3}, \quad \int_{C_{2}} \sqrt{x+y} d x=2 \sqrt{3}-\frac{16}{3}, \quad \int_{C_{3}} \sqrt{x+y} d x=0 \\
& \oint_{C} \sqrt{x+y} d x=\frac{4}{3}+\left(2 \sqrt{3}-\frac{16}{3}\right)+0=2 \sqrt{3}-4
\end{aligned}
$$

5. Let R be the annulus $a^{2} \leq x^{2}+y^{2} \leq b^{2}$ in the (x, y)-plane, where $0<a<1<b$, and let $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ be the vector field on R with

$$
M(x, y)=-\frac{y}{x^{2}+y^{2}}, \quad N(x, y)=\frac{x}{x^{2}+y^{2}} .
$$

(a) Show that

$$
\frac{\partial N}{\partial x}=\frac{\partial M}{\partial y} \quad \text { for all }(x, y) \text { in } R .
$$

(b) Let the curve C be circle $x^{2}+y^{2}=1$ in R, oriented counter-clockwise. Evaluate the line integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

Is \mathbf{F} a conservative vector field on R ?
(c) Explain why the results in (a) and (b) are consistent with Green's theorem.

Solution.

- (a) This equation follows by computing the derivatives and simplifying the result.
- (b) We parametrize the circle by $x=\cos t, y=\sin t$ with $0 \leq t \leq 2 \pi$. Then $x^{2}+y^{2}=1, d x=-(\sin t) d t, d y=(\cos t) d t$, and

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{C}-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y \\
& =\int_{0}^{2 \pi}\left(\sin ^{2} t+\cos ^{2} t\right) d t \\
& =2 \pi
\end{aligned}
$$

- (c) Let C_{a}, C_{1} be the circles with radii a and 1 , oriented counterclockwise, and let R_{a} be the annulus $a^{2} \leq x^{2}+y^{2} \leq 1$. Then Green's theorem implies that

$$
\iint_{R_{a}}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\oint_{C_{1}}(M d x+N d y)-\oint_{C_{a}}(M d x+N d y)
$$

From (a), the left-hand side of this equation is zero, so the theorem implies that the circulation of \mathbf{F} around C_{1} is equal to the circulation around C_{a},

$$
\oint_{C_{1}}(M d x+N d y)=\oint_{C_{a}}(M d x+N d y)
$$

but it doesn't imply that the circulation is zero. We can't take $a=0$ in this argument, since the vector field \mathbf{F} isn't differentiable (or defined) at $(x, y)=(0,0)$, and we can't apply Green's theorem to the entire circular region $x^{2}+y^{2} \leq 1$.

