
Calculus
Math 21D, Fall 2019

Solutions: Sample Questions Midterm II

1. (a) Write down a parametric equation for the ellipse

x2

a2
+
y2

b2
= 1

where a, b > 0 are constants.

(b) Use the parametrization in (a) to obtain an integral for the arclength of
the ellipse. Do not attempt to evaluate the integral.

Solution.

• (a) A natural parametrization is

x = a cos t, y = b sin t, 0 ≤ t ≤ 2π,

with position vector r(t) = (a cos t)i + (b sin t)j.

• (b) The arclength L is

L =

∫ 2π

0

|r′(t)| dt

=

∫ 2π

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ 2π

0

√
a2 sin2 t+ b2 cos2 t dt.
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2. Let C be a curve parametrized by −1 < s < 1 with position vector

r(s) =
1

3
(1 + s)3/2i +

1

3
(1− s)3/2j +

1√
2
sk.

(a) Show that s is an arclength parameter for the curve.

(b) Find the unit tangent vector T.

(c) Find the unit normal vector N.

(d) Find the binormal vector B = T×N.

(e) Find the curvature κ.

Solution.

• (a) The parameter s is an arclength parameter if |r′(s)| = 1. We
compute that

r′(s) =
1

2
(1 + s)1/2i− 1

2
(1− s)1/2j +

1√
2
k,

|r′(s)| =
√

1

4
(1 + s) +

1

4
(1− s) +

1

2
= 1.

• (b) Since r′ is a unit vector, the unit tangent vector is T = r′, or

T(s) =
1

2
(1 + s)1/2i− 1

2
(1− s)1/2j +

1√
2
k.

• (c) The unit normal vector is

N =
T′

|T′|
.

We have

T′(s) =
1

4
(1 + s)−1/2i +

1

4
(1− s)−1/2j,

|T′(s)| = 1

4

√
(1 + s)−1 + (1− s)−1 =

1

4

√
2

1− s2
,

so, after some simplification,

N(s) =
1√
2

(1− s)1/2i +
1√
2

(1 + s)1/2j.
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• (d) We compute that

B(s) =

∣∣∣∣∣∣
i j k

1
2
(1 + s)1/2 −1

2
(1− s)1/2 1√

2
1√
2
(1− s)1/2 1√

2
(1 + s)1/2 0

∣∣∣∣∣∣
= −1

2
(1 + s)1/2i +

1

2
(1− s)1/2j +

1√
2
k

• (e) Since r(s) is an arclength parametrization, we have

κ(s) = |T′(s)| = 1

4

√
2

1− s2
.
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3. Let
F(x, y, z) = y2i + (2xy + z2)j + (2yz + 3z2)k.

(a) Compute ∇× F.

(b) Find a function f such that F = ∇f .

(c) Let C be the oriented line with initial point (1,−1, 2) and terminal point
(−1, 1,−1). Evaluate ∫

C

F · dr.

(d) True or False: “The line integral of F around any closed curve is zero.”

Solution.

• (a) We have

∇× F(x, y, z) =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
y2 2xy + z2 2yz + 3z2

∣∣∣∣∣∣
= (2z − 2z)i− (0− 0)j + (2y − 2y)k

= 0

Since ∇ × F = 0 on a simply connected region, the vector field F is
conservative.

• (b) If F = ∇f , then by equating x-components and integrating, we get
that

∂f

∂x
= y2, f(x, y, z) = xy2 + g(y, z),

where g(y, z) is a function of integration. Equating y-components, we
get

∂f

∂y
= 2xy + z2.

Using the previous expression for f in this equation, we get that

2xy +
∂g

∂y
= 2xy + z2,

so, after simplifying and integrating, we get

∂g

∂y
= z2, g(y, z) = yz2 + h(z),
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where h(z) is a function of integration. Finally, equating z-components

∂f

∂z
= 2yz + 3z2,

and using the previous expressions for

f(x, y, z) = xy2 + yz2 + h(z),

we get that

2yz +
dh

dz
= 2yz + 3z2,

so
dh

dz
= 3z2, h(z) = z3 + C,

where C is a constant of integration. It follows that

f(x, y, z) = xy2 + yz2 + z3 + C.

• (c) Since F = ∇f is conservative,∫
C

F · dr = f(−1, 1,−1)− f(1,−1, 2) = (−1)− 5 = −6.

• (d) True. A vector field in some region D is conservative if and only if
its line integral around every closed curve in D is zero.
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4. (a) Let the curve C be the triangle in the (x, y)-plane with vertices (0, 0),
(1, 3), and (0, 3), oriented counter-clockwise. Use Green’s theorem to write
the line integral

I =

∮
C

√
x+ y dx

as an area integral over the interior R of C.

(b) Evaluate the area integral in (a). Compare your answer with your answer
to Exercise 16, §16.2.

Solution.

• (a) An application of Green’s theorem∫ ∫
R

(
∂N

∂x
− ∂M

∂y

)
dxdy =

∮
C

(M dx+N dy)

with M =
√
x+ y and N = 0, gives∮

C

√
x+ y dx = −

∫ ∫
R

∂

∂y

√
x+ y dxdy = −1

2

∫ ∫
R

1√
x+ y

dxdy.

• The triangle R can be described by 0 ≤ y ≤ 3, 0 ≤ x ≤ y/3, so

−1

2

∫ ∫
R

1√
x+ y

dxdy = −1

2

∫ 3

0

(∫ y/3

0

1√
x+ y

dx

)
dy

= −1

2

∫ 3

0

[
2
√
x+ y

]y/3
0

dy

=

(
1− 2√

3

)∫ 3

0

√
y dy

= 2
√

3− 4

• The area and line integrals agree. If C1 is the line from (0, 0) to (1, 3),
C2 is the line from (1, 3) to (0, 3), and C3 is the line from (0, 3) to (0, 0),
one finds that∫
C1

√
x+ y dx =

4

3
,

∫
C2

√
x+ y dx = 2

√
3− 16

3
,

∫
C3

√
x+ y dx = 0,∮

C

√
x+ y dx =

4

3
+

(
2
√

3− 16

3

)
+ 0 = 2

√
3− 4.
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5. Let R be the annulus a2 ≤ x2 + y2 ≤ b2 in the (x, y)-plane, where
0 < a < 1 < b, and let F(x, y) = M(x, y)i + N(x, y)j be the vector field on
R with

M(x, y) = − y

x2 + y2
, N(x, y) =

x

x2 + y2
.

(a) Show that
∂N

∂x
=
∂M

∂y
for all (x, y) in R.

(b) Let the curve C be circle x2 + y2 = 1 in R, oriented counter-clockwise.
Evaluate the line integral ∫

C

F · dr.

Is F a conservative vector field on R?

(c) Explain why the results in (a) and (b) are consistent with Green’s theo-
rem.

Solution.

• (a) This equation follows by computing the derivatives and simplifying
the result.

• (b) We parametrize the circle by x = cos t, y = sin t with 0 ≤ t ≤ 2π.
Then x2 + y2 = 1, dx = −(sin t)dt, dy = (cos t)dt, and∫

C

F · dr =

∫
C

− y

x2 + y2
dx+

x

x2 + y2
dy

=

∫ 2π

0

(
sin2 t+ cos2 t

)
dt

= 2π.

• (c) Let Ca, C1 be the circles with radii a and 1, oriented counter-
clockwise, and let Ra be the annulus a2 ≤ x2 + y2 ≤ 1. Then Green’s
theorem implies that∫ ∫

Ra

(
∂N

∂x
− ∂M

∂y

)
dxdy =

∮
C1

(M dx+N dy)−
∮
Ca

(M dx+N dy)
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From (a), the left-hand side of this equation is zero, so the theorem
implies that the circulation of F around C1 is equal to the circulation
around Ca, ∮

C1

(M dx+N dy) =

∮
Ca

(M dx+N dy) ,

but it doesn’t imply that the circulation is zero. We can’t take a = 0 in
this argument, since the vector field F isn’t differentiable (or defined)
at (x, y) = (0, 0), and we can’t apply Green’s theorem to the entire
circular region x2 + y2 ≤ 1.
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