Solutions: Midterm 2 Math 21D, Fall 2019

1. [15pts] Suppose that C is the parametric curve with position vector

$$
\mathbf{r}(t)=\left(e^{t}-t\right) \mathbf{i}+\left(4 e^{t / 2}\right) \mathbf{j}-\mathbf{k}, \quad 0 \leq t \leq 2
$$

Compute the arclength of C.

Solution.

- The arclength L of C is

$$
L=\int_{0}^{2}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

- We compute that

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\left(e^{t}-1\right) \mathbf{i}+\left(2 e^{t / 2}\right) \mathbf{j} \\
\left|\mathbf{r}^{\prime}(t)\right| & =\sqrt{\left(e^{t}-1\right)^{2}+4 e^{t}}=\sqrt{\left(e^{t}+1\right)^{2}}=e^{t}+1
\end{aligned}
$$

- It follows that

$$
\begin{aligned}
L & =\int_{0}^{2}\left(e^{t}+1\right) d t \\
& =\left[e^{t}+t\right]_{0}^{2} \\
& =e^{2}+1 .
\end{aligned}
$$

2. [15pts] The position vector as a function of time t of a particle moving in space is given by $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$.s (a) Find the velocity $\mathbf{v}(t)$, speed $|\mathbf{v}(t)|$, unit tangent vector $\mathbf{T}(t)$, and acceleration $\mathbf{a}(t)$ of the particle.
(b) Find the curvature κ of the particle path at the point $(1,1,1)$. You don't need to compute the curvature at general points on the path, and you can use the formula

$$
\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(\mathbf{t}) \times \mathbf{r}^{\prime \prime}(\mathbf{t})\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}
$$

Solution.

- We have

$$
\begin{aligned}
\mathbf{v}(t) & =\mathbf{r}^{\prime}(t)=\mathbf{i}+2 t \mathbf{j}+3 t^{2} \mathbf{k} \\
|\mathbf{v}(t)| & =\sqrt{1+4 t^{2}+9 t^{4}} \\
\mathbf{T}(t) & =\frac{\mathbf{v}(t)}{|\mathbf{v}(t)|}=\frac{\mathbf{i}+2 t \mathbf{j}+3 t^{2} \mathbf{k}}{\sqrt{1+4 t^{2}+9 t^{4}}} \\
\mathbf{a}(t) & =\mathbf{r}^{\prime \prime}(t)=2 \mathbf{j}+6 t \mathbf{k}
\end{aligned}
$$

- The point $(1,1,1)$ corresponds to $t=1$. We have

$$
\begin{aligned}
\mathbf{r}^{\prime}(1) & =\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}, \quad\left|\mathbf{r}^{\prime}(1)\right|=\sqrt{14} \\
\mathbf{r}^{\prime \prime}(1) & =2 \mathbf{j}+6 \mathbf{k} .
\end{aligned}
$$

It follows that

$$
\mathbf{r}^{\prime}(1) \times \mathbf{r}^{\prime \prime}(1)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 3 \\
0 & 2 & 6
\end{array}\right|=6 \mathbf{i}-6 \mathbf{j}+2 \mathbf{k}
$$

so $\left|\mathbf{r}^{\prime}(1) \times \mathbf{r}^{\prime \prime}(1)\right|=\sqrt{76}$, and

$$
\kappa(1)=\frac{\sqrt{76}}{14^{3 / 2}}=\frac{1}{14} \sqrt{\frac{38}{7}} .
$$

3. [15pts] (a) Say which one of the following three line integrals in the plane is path independent, and justify your answer:
(1) $\int_{C}-y d x+x d y$;
(2) $\int_{C} y d x+x d y$;
(3) $\int_{C}(x+y) d x$.
(b) Find a potential function for the line integral in (a) that is path independent and evaluate the line integral when C is the section of the parabola $y=x^{2}$ from the initial point $(1,1)$ to the terminal point $(2,4)$.

Solution.

- On a simply connected region (like the plane), the line integral

$$
\int_{C} M d x+N d y
$$

is path independent if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

This condition is satisfied by (2) but not by (1) or (3), so (2) is the only path-independent line integral.

- We have $y d x+x d y=d(x y)$, so it is an exact differential form; equivalently the vector field

$$
y \mathbf{i}+x \mathbf{j}=\nabla(x y)
$$

is a conservative vector field with potential $x y$.

- It follows that

$$
\int_{C} y d x+x d y=[x y]_{(1,1)}^{(2,4)}=7
$$

- Alternatively, with a little more work, we could evaluate the line integral by parameterizing C e.g., as $x=t, y=t^{2}$ with $1 \leq t \leq 2$, and evaluating the resulting t-integral:

$$
\int_{C} y d x+x d y=\int_{1}^{2} 3 t^{2} d t=\left[t^{3}\right]_{1}^{2}=7
$$

4. [15pts] Let

$$
\mathbf{F}(x, y, z)=x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}
$$

and let C be the parametric curve $x=t, y=t^{2}, z=t^{3}$ with $0 \leq t \leq 1$. Evaluate the line integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r} .
$$

Solution.

- We have

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

- We compute that

$$
\begin{aligned}
\mathbf{F}(\mathbf{r}(t)) & =t^{3} \mathbf{i}+t^{5} \mathbf{j}+t^{4} \mathbf{k}, \\
\mathbf{r}^{\prime}(t) & =\mathbf{i}+2 t \mathbf{j}+3 t^{2} \mathbf{k} \\
\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) & =t^{3}+5 t^{6}
\end{aligned}
$$

so

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{1}\left(t^{3}+5 t^{6}\right) d t \\
& =\left[\frac{1}{4} t^{4}+\frac{5}{7} t^{7}\right]_{0}^{1} \\
& =\frac{27}{28}
\end{aligned}
$$

5. [15pts] Use Green's theorem to compute the outward flux $\int_{C} \mathbf{F} \cdot \mathbf{n} d s$ of

$$
\mathbf{F}(x, y)=x^{3} \mathbf{i}+y^{3} \mathbf{j}
$$

across the circle $x^{2}+y^{2}=9$.

Solution.

- From the flux form of Green's theorem, if a simple closed curve C encloses the region R and $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$, then

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y .
$$

For the given \mathbf{F} and C, it follows that

$$
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=3 \iint_{R}\left(x^{2}+y^{2}\right) d x d y
$$

where R is the disc $x^{2}+y^{2} \leq 9$.

- To evaluate this integral, we use polar coordinates with area element $d x d y=r d r d \theta$, which gives

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot \mathbf{n} d s & =3 \int_{0}^{2 \pi} \int_{0}^{3} r^{2} \cdot r d r d \theta \\
& =3 \cdot 2 \pi \cdot\left[\frac{1}{4} r^{4}\right]_{0}^{3} \\
& =\frac{3^{5}}{2} \pi \\
& =\frac{243}{2} \pi
\end{aligned}
$$

6. [15pts] Use Green's theorem to compute the circulation $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$ of

$$
\mathbf{F}(x, y)=\left(x^{2}+y^{2}\right) \mathbf{i}-2 x y \mathbf{j}
$$

around the triangle with vertices $(0,0),(1,0)$, and $(0,2)$, oriented counterclockwise.

Solution.

- From the circulation form of Green's theorem, if a simple closed curve C encloses the region R and $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$, then

$$
\oint_{C} \mathbf{F} \cdot \mathbf{T} d s=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

For the given \mathbf{F} and C, it follows that

$$
\oint_{C} \mathbf{F} \cdot \mathbf{T} d s=\iint_{R}(-2 y-2 y) d x d y=-4 \iint_{R} y d x d y
$$

where R is the triangle enclosed by C.

- The triangle R is described by $0 \leq x \leq 1,0 \leq y \leq 2-2 x$, so

$$
\begin{aligned}
\iint_{R} y d x d y & =\int_{0}^{1} \int_{0}^{2-2 x} y d y d x \\
& =\int_{0}^{1}\left[\frac{1}{2} y^{2}\right]_{0}^{2-2 x} d x \\
& =2 \int_{0}^{1}(1-x)^{2} d x \\
& =2\left[-\frac{1}{3}(1-x)^{3}\right]_{0}^{1} \\
& =\frac{2}{3}
\end{aligned}
$$

and

$$
\oint_{C} \mathbf{F} \cdot \mathbf{T} d s=-\frac{8}{3} .
$$

