MAT 21D, Third Midterm
 November 22, 2019

Name: (Last) (First)

Signature:
Student ID Number:

- Ubiquitous internet access no longer makes bathroom breaks feasible. If you need to use the bathroom, please do so before the start of the exam.
- The exam set consists of 7 pages, including the cover sheet.
- This exam is closed book, no notes, no calculators, no phones or any other wireless devices.
- Use the back sides of the sheets if you need scratch paper.
- Show all your work to obtain full credit.

Problem	Points	Score
1	8	
2	8	
3	9	
4	8	
5	9	
6	8	
Total	50	

Problem 1

[8 Points]

Let C be the curve given by the parametrization

$$
r(t)=\left\langle\sin t, t^{2}, \cos t\right\rangle, \quad 0 \leq t \leq 3 \pi .
$$

Find the work done by the vector field

$$
F(x, y, z)=\left\langle x+z, y\left(x^{2}+z^{2}\right), z-x\right\rangle
$$

over the curve C in the direction of increasing t.

Problem 2

Determine if the following vector fields F in $x y z$-space are conservative. Give justifications for your answers.
(a) [4 Points] $\quad F(x, y, z)=\left\langle 2 x z+y^{2}, 2 x y-y z^{3}, x^{2}+y+z^{2}\right\rangle$
(b) [4 Points] $\quad F(x, y, z)=\left\langle\frac{x}{\sqrt{x^{2}+z^{2}+1}}+y z, x z, \frac{z}{\sqrt{x^{2}+z^{2}+1}}+x y\right\rangle$

Problem 3

Let C_{1} and C_{2} be the line segments shown in the following figure:

Find the flow of the vector field

$$
F(x, y, z)=\left\langle 3 x-y+z, y-x z, 2-x z^{2}\right\rangle
$$

along the curve $C=C_{1} \cup C_{2}$ from $(0,0,1)$ to $(1,2,0)$.

Problem 4

Consider the vector field

$$
F(x, y, z)=\left\langle 3 x^{2} z+y^{3}, 3 x y^{2}-2 y z^{2}, x^{3}-2 y^{2} z+2 z e^{z^{2}-1}\right\rangle
$$

in $x y z$-space.
(a) [5 Points] Find a potential function f for F.
(b) [3 Points] Let C be a differentiable curve starting in the point $A=(0,1,-1)$ and ending in the point $B=(1,2,1)$. Find the work W done by F along the curve C. Give a justification for your answer.

Problem 5

Consider the vector field

$$
F(x, y)=\left\langle x^{3}-2 x-\cos ^{2} y, y^{3}-2 y+\sin ^{2} x\right\rangle
$$

in the $x y$-plane. Let C be the circle of radius 2 with center at the origin $(0,0)$, and assume that C is traversed in counterclockwise direction.
(a) [4 Points] Express the flux of F across C as a double integral over a suitable region in the $x y$-plane. Give a justification for your answer. (Do not yet evaluate the integral.)
(b) [5 Points] Evaluate the double integral from (a) to find the flux of F across C.

Problem 6

Let C be the closed loop (in the $x y$-plane) shown in the following figure:

Find the circulation of the vector field $F(x, y)=\left\langle 2 x-e^{y}, 4 x^{2} y\right\rangle$ around C.

