Calculus

Math 21D, Fall 2019
 Sample Questions: Midterm II

1. (a) Write down a parametric equation for the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

where $a, b>0$ are constants.
(b) Use the parametrization in (a) to obtain an integral for the arclength of the ellipse. Do not attempt to evaluate the integral.
2. Let C be a curve parametrized by $-1<s<1$ with position vector

$$
\mathbf{r}(s)=\frac{1}{3}(1+s)^{3 / 2} \mathbf{i}+\frac{1}{3}(1-s)^{3 / 2} \mathbf{j}+\frac{1}{\sqrt{2}} s \mathbf{k} .
$$

(a) Show that s is an arclength parameter for the curve.
(b) Find the unit tangent vector \mathbf{T}.
(c) Find the unit normal vector \mathbf{N}.
(d) Find the binormal vector $\mathbf{B}=\mathbf{T} \times \mathbf{N}$.
(e) Find the curvature κ.
3. Let

$$
\mathbf{F}(x, y, z)=y^{2} \mathbf{i}+\left(2 x y+z^{2}\right) \mathbf{j}+\left(2 y z+3 z^{2}\right) \mathbf{k} .
$$

(a) Compute $\nabla \times \mathbf{F}$.
(b) Find a function f such that $\mathbf{F}=\nabla f$.
(c) Let C be the oriented line with initial point $(1,-1,2)$ and terminal point $(-1,1,-1)$. Evaluate

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

(d) True or False:"The line integral of \mathbf{F} around any closed curve is zero."
4. (a) Let the curve C be the triangle in the (x, y)-plane with vertices $(0,0)$, $(1,3)$, and $(0,3)$, oriented counter-clockwise. Use Green's theorem to write the line integral

$$
I=\oint_{C} \sqrt{x+y} d x
$$

as an area integral over the interior R of C.
(b) Evaluate the area integral in (a). Compare your answer with your answer to Exercise 16, §16.2.
5. Let R be the annulus $a^{2} \leq x^{2}+y^{2} \leq b^{2}$ in the (x, y)-plane, where $0<a<1<b$, and let $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ be the vector field on R with

$$
M(x, y)=-\frac{y}{x^{2}+y^{2}}, \quad N(x, y)=\frac{x}{x^{2}+y^{2}}
$$

(a) Show that

$$
\frac{\partial N}{\partial x}=\frac{\partial M}{\partial y} \quad \text { for all }(x, y) \text { in } R .
$$

(b) Let the curve C be circle $x^{2}+y^{2}=1$ in R, oriented counter-clockwise. Evaluate the line integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

Is \mathbf{F} a conservative vector field on R ?
(c) Explain why the results in (a) and (b) are consistent with Green's theorem.

