Midterm 1: Solutions
 Math 21D, Fall 2019

1. [15pts] (a) Let R be the triangle in the (x, y)-plane with vertices $(0,0)$, $(1,3),(0,3)$. Sketch R.
(b) Write the double integral

$$
\iint_{R}\left(3 x+2 y^{2}\right) d A
$$

as an iterated integral in the order $d x d y$ (integrate with respect to x first followed by y). DO NOT EVALUATE.
(c) Write the double integral in (b) as an iterated integral in the order $d y d x$ (integrate with respect to y first followed by x). DO NOT EVALUATE.

Solution.

- (a) The triangle R is shown in the figure.

- (b) The triangle R is described by $0 \leq y \leq 3,0 \leq x \leq y / 3$ so

$$
\iint_{R}\left(3 x+2 y^{2}\right) d A=\int_{0}^{3} \int_{0}^{y / 3}\left(3 x+2 y^{2}\right) d x d y
$$

- (b) The triangle R is described by $0 \leq x \leq 1,3 x \leq y \leq 3$ so

$$
\iint_{R}\left(3 x+2 y^{2}\right) d A=\int_{0}^{1} \int_{3 x}^{3}\left(3 x+2 y^{2}\right) d y d x
$$

2. [15pts] (a) Evaluate the iterated integral

$$
\int_{0}^{3} \int_{y^{2}-2 y}^{4 y-y^{2}} x d x d y
$$

(b) Sketch the region of integration in the (x, y)-plane for the integral in (a).

Solution.

- (a) We have

$$
\begin{aligned}
\int_{y^{2}-2 y}^{4 y-y^{2}} x d x & =\left[\frac{1}{2} x^{2}\right]_{y^{2}-2 y}^{4 y-y^{2}} \\
& =\frac{1}{2}\left[\left(4 y-y^{2}\right)^{2}-\left(y^{2}-2 y\right)^{2}\right] \\
& =6 y^{2}-2 y^{3}, \\
\int_{0}^{3} \int_{y^{2}-2 y}^{4 y-y^{2}} x d x d y & =\int_{0}^{3}\left(6 y^{2}-2 y^{3}\right) d y \\
& =\left[2 y^{3}-\frac{1}{2} y^{4}\right]_{0}^{3}=\frac{27}{2} .
\end{aligned}
$$

- (b) The region R is shown in the figure.

3. [15pts] Let R be the region in $x \geq 0$, $y \geq 0$ between the lines $y=0, y=x$ and the circles $x^{2}+y^{2}=1, x^{2}+y^{2}=4$ (see figure). Use polar coordinates to evaluate the double integral

$$
\iint_{R} \frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}} d A
$$

Solution.

- The region R is described in polar coordinates by

$$
0 \leq \theta \leq \pi / 4, \quad 1 \leq r \leq 2
$$

- Since $x^{2}+y^{2}=r^{2}$ and $d A=r d r d \theta$, we get

$$
\begin{aligned}
\iint_{R} \frac{1}{\left(x^{2}+y^{2}\right)^{3 / 2}} d A & =\int_{0}^{\pi / 4} \int_{1}^{2} \frac{1}{r^{3}} r d r d \theta \\
& =\left(\int_{0}^{\pi / 4} d \theta\right)\left(\int_{1}^{2} \frac{1}{r^{2}} d r\right) \\
& =\frac{\pi}{4}\left[-\frac{1}{r}\right]_{1}^{2} \\
& =\frac{\pi}{8}
\end{aligned}
$$

4. [15pts] Let $a, b, c>0$ be positive constants and let D be the rectangular box $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$.
(a) Evaluate the triple integral

$$
\iiint_{D}(x+y+z) d V
$$

(b) What is the average value of $x+y+z$ over D ?

Solution.

- (a) We have (any other order of integration works as well)

$$
\iiint_{D}(x+y+z) d V=\int_{0}^{a} \int_{0}^{b} \int_{0}^{c}(x+y+z) d z d y d x
$$

Then

$$
\begin{aligned}
\int_{0}^{c}(x+y+z) d z & =\left[x z+y z+\frac{1}{2} z^{2}\right]_{0}^{c} \\
& =x c+y c+\frac{1}{2} c^{2}, \\
\int_{0}^{b}\left(x c+y c+\frac{1}{2} c^{2}\right) d y & =\left[x y c+\frac{1}{2} y^{2} c+\frac{1}{2} y c^{2}\right]_{0}^{b} \\
& =x b c+\frac{1}{2} b^{2} c+\frac{1}{2} b c^{2} \\
\int_{0}^{a}\left(x b c+\frac{1}{2} b^{2} c+\frac{1}{2} b c^{2}\right) d x & =\left[\frac{1}{2} x^{2} b c+\frac{1}{2} x b^{2} c+\frac{1}{2} x b c^{2}\right]_{0}^{a} \\
& =\frac{1}{2} a^{2} b c+\frac{1}{2} a b^{2} c+\frac{1}{2} a b c^{2}, \\
\iiint_{D}(x+y+z) d V & =\frac{1}{2} a b c(a+b+c) .
\end{aligned}
$$

- (b) The volume of D is $a b c$, so the average value of $x+y+z$ on D is

$$
\frac{1}{\operatorname{Volume}(D)} \iiint_{D}(x+y+z) d V=\frac{1}{2}(a+b+c)
$$

5. [20pts] Let D be the upper-half of the unit sphere $x^{2}+y^{2}+z^{2} \leq 1, z \geq 0$, and let I be the triple integral

$$
I=\iiint_{D} z\left(x^{2}+y^{2}\right) d V
$$

(a) Write I as an iterated integral in cylindrical coordinates in the order $d z d \theta d r$ (integrate with respect to z first). DO NOT EVALUATE.
(b) Write I as an iterated integral in spherical coordinates in the order $d \theta d \phi d \rho$. DO NOT EVALUATE.

Solution.

- (a) Since $x^{2}+y^{2}+z^{2}=1$ gives $z^{2}=1-r^{2}$, the hemisphere is described in cylindrical coordinates by

$$
0 \leq r \leq 1, \quad 0 \leq \theta \leq 2 \pi, \quad 0 \leq z \leq \sqrt{1-r^{2}}
$$

Using $x^{2}+y^{2}=r^{2}$ and the cylindrical volume element

$$
d V=r d z d \theta d r
$$

we get that

$$
I=\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\sqrt{1-r^{2}}} z r^{2} \cdot r d z d \theta d r
$$

- (b) The hemisphere is described in spherical coordinates by

$$
0 \leq \rho \leq 1, \quad 0 \leq \phi \leq \frac{\pi}{2}, \quad 0 \leq \theta \leq 2 \pi
$$

Using $z=\rho \cos \phi, x^{2}+y^{2}=\rho^{2} \sin ^{2} \phi$, and the spherical volume element

$$
d V=\rho^{2} \sin \phi d \theta d \phi d \rho,
$$

we get that

$$
I=\int_{0}^{1} \int_{0}^{\pi / 2} \int_{0}^{2 \pi} \rho \cos \phi \cdot \rho^{2} \sin ^{2} \phi \cdot \rho^{2} \sin \phi d \theta d \phi d \rho .
$$

6. [10pts] Let R be closed, bounded region in the (x, y)-plane and $f(x, y)$ an integrable function on R. Explain how $\iint_{R} f d A$ is defined in terms of Riemann sums.

Solution.

- For every partition \mathcal{P} of R into rectangles $R_{1}, R_{2}, \ldots, R_{n}$, choose any point $\left(x_{j}, y_{j}\right)$ in each rectangle R_{j} of the partition. Then

$$
\iint_{R} f d A=\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{j=1}^{n} f\left(x_{j}, y_{j}\right) \Delta A_{j}
$$

where $\|\mathcal{P}\|$ is the maximum side-length of the rectangles R_{j} in the partition \mathcal{P} and ΔA_{j} is the area of R_{j}.

Optional Remark. A precise way to state this definition is as follows. A function $f(x, y)$ is integrable on R with

$$
\iint_{R} f d A=L
$$

if for every $\epsilon>0$ there exists $\delta>0$ such that

$$
\left|\sum_{j=1}^{n} f\left(x_{j}, y_{j}\right) \Delta A_{j}-L\right|<\epsilon
$$

for every partition \mathcal{P} of R with $\|\mathcal{P}\|<\delta$ and every choice of points $\left(x_{j}, y_{j}\right)$ in R_{j}.

