1. [15pts] (a) Let R be the triangle in the (x,y)-plane with vertices $(0,0)$, $(1,3)$, $(0,3)$. Sketch R.
(b) Write the double integral
\[
\int \int_{R} (3x + 2y^2) \, dA
\]
as an iterated integral in the order $dxdy$ (integrate with respect to x first followed by y). DO NOT EVALUATE.
(c) Write the double integral in (b) as an iterated integral in the order $dydx$ (integrate with respect to y first followed by x). DO NOT EVALUATE.

Solution.

• (a) The triangle R is shown in the figure.

• (b) The triangle R is described by $0 \leq y \leq 3$, $0 \leq x \leq y/3$ so

\[
\int \int_{R} (3x + 2y^2) \, dA = \int_{0}^{3} \int_{0}^{y/3} (3x + 2y^2) \, dx \, dy.
\]

• (b) The triangle R is described by $0 \leq x \leq 1$, $3x \leq y \leq 3$ so

\[
\int \int_{R} (3x + 2y^2) \, dA = \int_{0}^{1} \int_{3x}^{3} (3x + 2y^2) \, dy \, dx.
\]
2. [15pts] (a) Evaluate the iterated integral
\[
\int_0^3 \int_{y^2-2y}^{4y-y^2} x \, dx \, dy.
\]
(b) Sketch the region of integration in the \((x, y)\)-plane for the integral in (a).

Solution.

• (a) We have
\[
\int_{y^2-2y}^{4y-y^2} x \, dx = \left[\frac{1}{2} x^2 \right]_{y^2-2y}^{4y-y^2} = \frac{1}{2} \left[(4y - y^2)^2 - (y^2 - 2y)^2 \right] = 6y^2 - 2y^3,
\]
\[
\int_0^3 \left(6y^2 - 2y^3 \right) \, dy = \left[2y^3 - \frac{1}{2} y^4 \right]_0^3 = \frac{27}{2}.
\]

• (b) The region \(R \) is shown in the figure.
3. [15pts] Let R be the region in $x \geq 0,$ $y \geq 0$ between the lines $y = 0,$ $y = x$ and the circles $x^2 + y^2 = 1,$ $x^2 + y^2 = 4$ (see figure). Use polar coordinates to evaluate the double integral

$$\int \int_R \frac{1}{(x^2 + y^2)^{3/2}} \, dA.$$

Solution.

- The region R is described in polar coordinates by

 $$0 \leq \theta \leq \pi/4, \quad 1 \leq r \leq 2.$$

- Since $x^2 + y^2 = r^2$ and $dA = r \, dr \, d\theta,$ we get

 $$\int \int_R \frac{1}{(x^2 + y^2)^{3/2}} \, dA = \int_0^{\pi/4} \int_1^2 \frac{1}{r^3} \, r \, dr \, d\theta$$

 $$= \left(\int_0^{\pi/4} d\theta \right) \left(\int_1^2 \frac{1}{r^2} \, dr \right)$$

 $$= \frac{\pi}{4} \left[-\frac{1}{r} \right]_1^2$$

 $$= \frac{\pi}{4} \left(-1 \right)^2$$

 $$= \frac{\pi}{8}.$$

Let $a, b, c > 0$ be positive constants and let D be the rectangular box $0 \leq x \leq a$, $0 \leq y \leq b$, $0 \leq z \leq c$.

(a) Evaluate the triple integral

$$\int \int \int_D (x + y + z) \, dV.$$

(b) What is the average value of $x + y + z$ over D?

Solution.

• (a) We have (any other order of integration works as well)

$$\int \int \int_D (x + y + z) \, dV = \int_0^a \int_0^b \int_0^c (x + y + z) \, dz \, dy \, dx.$$

Then

$$\int_0^c (x + y + z) \, dz = \left[xz + yz + \frac{1}{2} z^2 \right]_0^c = xc + yc + \frac{1}{2} c^2,$$

$$\int_0^b \left(xc + yc + \frac{1}{2} c^2 \right) \, dy = \left[xyc + \frac{1}{2} y^2 c + \frac{1}{2} yc^2 \right]_0^b = xbc + \frac{1}{2} b^2 c + \frac{1}{2} bc^2,$$

$$\int_0^a \left(xbc + \frac{1}{2} b^2 c + \frac{1}{2} bc^2 \right) \, dx = \left[\frac{1}{2} x^2 bc + \frac{1}{2} x b^2 c + \frac{1}{2} x bc^2 \right]_0^a = \frac{1}{2} a^2 bc + \frac{1}{2} ab^2 c + \frac{1}{2} abc^2,$$

$$\int \int \int_D (x + y + z) \, dV = \frac{1}{2} abc (a + b + c).$$

• (b) The volume of D is abc, so the average value of $x + y + z$ on D is

$$\frac{1}{\text{Volume}(D)} \int \int \int_D (x + y + z) \, dV = \frac{1}{2} (a + b + c).$$
5. [20pts] Let \(D \) be the upper-half of the unit sphere \(x^2 + y^2 + z^2 \leq 1, \ z \geq 0, \) and let \(I \) be the triple integral

\[
I = \iiint_D z(x^2 + y^2) \, dV.
\]

(a) Write \(I \) as an iterated integral in cylindrical coordinates in the order \(dzd\theta dr \) (integrate with respect to \(z \) first). DO NOT EVALUATE.
(b) Write \(I \) as an iterated integral in spherical coordinates in the order \(d\theta d\phi d\rho \). DO NOT EVALUATE.

Solution.

• (a) Since \(x^2 + y^2 + z^2 = 1 \) gives \(z^2 = 1 - r^2 \), the hemisphere is described in cylindrical coordinates by

\[
0 \leq r \leq 1, \quad 0 \leq \theta \leq 2\pi, \quad 0 \leq z \leq \sqrt{1 - r^2}.
\]

Using \(x^2 + y^2 = r^2 \) and the cylindrical volume element

\[
dV = r \, dzd\theta dr,
\]

we get that

\[
I = \int_0^1 \int_0^{2\pi} \int_0^{\sqrt{1-r^2}} zr^2 \cdot r \, dzd\theta dr.
\]

• (b) The hemisphere is described in spherical coordinates by

\[
0 \leq \rho \leq 1, \quad 0 \leq \phi \leq \frac{\pi}{2}, \quad 0 \leq \theta \leq 2\pi.
\]

Using \(z = \rho \cos \phi, \ x^2 + y^2 = \rho^2 \sin^2 \phi \), and the spherical volume element

\[
dV = \rho^2 \sin \phi \, d\theta d\phi d\rho,
\]

we get that

\[
I = \int_0^1 \int_0^{\pi/2} \int_0^{2\pi} \rho \cos \phi \cdot \rho^2 \sin^2 \phi \cdot \rho^2 \sin \phi \, d\theta d\phi d\rho.
\]
6. [10pts] Let R be closed, bounded region in the (x,y)-plane and $f(x,y)$ an integrable function on R. Explain how $\iint_{R} f \, dA$ is defined in terms of Riemann sums.

Solution.

- For every partition \mathcal{P} of R into rectangles R_1, R_2, \ldots, R_n, choose any point (x_j, y_j) in each rectangle R_j of the partition. Then

$$\iint_{R} f \, dA = \lim_{\|\mathcal{P}\| \to 0} \sum_{j=1}^{n} f(x_j, y_j) \Delta A_j,$$

where $\|\mathcal{P}\|$ is the maximum side-length of the rectangles R_j in the partition \mathcal{P} and ΔA_j is the area of R_j.

Optional Remark. A precise way to state this definition is as follows. A function $f(x,y)$ is integrable on R with

$$\iint_{R} f \, dA = L$$

if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$\left| \sum_{j=1}^{n} f(x_j, y_j) \Delta A_j - L \right| < \epsilon$$

for every partition \mathcal{P} of R with $\|\mathcal{P}\| < \delta$ and every choice of points (x_j, y_j) in R_j.

6