Midterm 1: Solutions Math 21D, Fall 2019

1. [15pts] (a) Let R be the triangle in the (x, y)-plane with vertices (0, 0), (1, 3), (0, 3). Sketch R.

(b) Write the double integral

$$\int \int_R \left(3x + 2y^2 \right) \, dA$$

as an iterated integral in the order dxdy (integrate with respect to x first followed by y). DO NOT EVALUATE.

(c) Write the double integral in (b) as an iterated integral in the order dydx (integrate with respect to y first followed by x). DO NOT EVALUATE.

Solution.

• (a) The triangle R is shown in the figure.

• (b) The triangle R is described by $0 \le y \le 3, 0 \le x \le y/3$ so

$$\int \int_{R} \left(3x + 2y^2 \right) \, dA = \int_{0}^{3} \int_{0}^{y/3} \left(3x + 2y^2 \right) \, dx dy.$$

• (b) The triangle R is described by $0 \le x \le 1, 3x \le y \le 3$ so

$$\int \int_{R} (3x + 2y^2) \, dA = \int_{0}^{1} \int_{3x}^{3} (3x + 2y^2) \, dy dx.$$

2. [15pts] (a) Evaluate the iterated integral

$$\int_0^3 \int_{y^2 - 2y}^{4y - y^2} x \, dx \, dy.$$

(b) Sketch the region of integration in the (x, y)-plane for the integral in (a).

Solution.

• (a) We have

$$\int_{y^2 - 2y}^{4y - y^2} x \, dx = \left[\frac{1}{2}x^2\right]_{y^2 - 2y}^{4y - y^2}$$
$$= \frac{1}{2}\left[\left(4y - y^2\right)^2 - \left(y^2 - 2y\right)^2\right]$$
$$= 6y^2 - 2y^3,$$
$$\int_0^3 \int_{y^2 - 2y}^{4y - y^2} x \, dx dy = \int_0^3 \left(6y^2 - 2y^3\right) \, dy$$
$$= \left[2y^3 - \frac{1}{2}y^4\right]_0^3 = \frac{27}{2}.$$

• (b) The region R is shown in the figure.

3. [15pts] Let R be the region in $x \ge 0$, $y \ge 0$ between the lines y = 0, y = x and the circles $x^2 + y^2 = 1$, $x^2 + y^2 = 4$ (see figure). Use polar coordinates to evaluate the double integral

$$\int \int_R \frac{1}{(x^2 + y^2)^{3/2}} \, dA.$$

Solution.

• The region R is described in polar coordinates by

$$0 \le \theta \le \pi/4, \qquad 1 \le r \le 2.$$

• Since $x^2 + y^2 = r^2$ and $dA = rdrd\theta$, we get

$$\int \int_{R} \frac{1}{(x^{2} + y^{2})^{3/2}} dA = \int_{0}^{\pi/4} \int_{1}^{2} \frac{1}{r^{3}} r dr d\theta$$
$$= \left(\int_{0}^{\pi/4} d\theta \right) \left(\int_{1}^{2} \frac{1}{r^{2}} dr \right)$$
$$= \frac{\pi}{4} \left[-\frac{1}{r} \right]_{1}^{2}$$
$$= \frac{\pi}{8}.$$

4. [15pts] Let a, b, c > 0 be positive constants and let D be the rectangular box $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$.

(a) Evaluate the triple integral

$$\int \int \int_D (x+y+z) \ dV.$$

(b) What is the average value of x + y + z over D?

Solution.

• (a) We have (any other order of integration works as well)

$$\int \int \int_D (x+y+z) \, dV = \int_0^a \int_0^b \int_0^c (x+y+z) \, dz dy dx.$$

Then

$$\begin{split} \int_{0}^{c} (x+y+z) \, dz &= \left[xz+yz + \frac{1}{2}z^{2} \right]_{0}^{c} \\ &= xc + yc + \frac{1}{2}c^{2}, \\ \int_{0}^{b} \left(xc+yc + \frac{1}{2}c^{2} \right) \, dy &= \left[xyc + \frac{1}{2}y^{2}c + \frac{1}{2}yc^{2} \right]_{0}^{b} \\ &= xbc + \frac{1}{2}b^{2}c + \frac{1}{2}bc^{2} \\ \int_{0}^{a} \left(xbc + \frac{1}{2}b^{2}c + \frac{1}{2}bc^{2} \right) \, dx &= \left[\frac{1}{2}x^{2}bc + \frac{1}{2}xb^{2}c + \frac{1}{2}xbc^{2} \right]_{0}^{a} \\ &= \frac{1}{2}a^{2}bc + \frac{1}{2}ab^{2}c + \frac{1}{2}abc^{2}, \\ \int \int \int_{D} \left(x+y+z \right) \, dV &= \frac{1}{2}abc \left(a+b+c \right). \end{split}$$

• (b) The volume of D is *abc*, so the average value of x + y + z on D is

$$\frac{1}{\text{Volume}(D)} \int \int \int_D (x+y+z) \, dV = \frac{1}{2} \left(a+b+c\right).$$

5. [20pts] Let D be the upper-half of the unit sphere $x^2 + y^2 + z^2 \le 1$, $z \ge 0$, and let I be the triple integral

$$I = \int \int \int_D z \left(x^2 + y^2 \right) \, dV.$$

(a) Write I as an iterated integral in cylindrical coordinates in the order $dzd\theta dr$ (integrate with respect to z first). DO NOT EVALUATE.

(b) Write I as an iterated integral in spherical coordinates in the order $d\theta d\phi d\rho$. DO NOT EVALUATE.

Solution.

• (a) Since $x^2 + y^2 + z^2 = 1$ gives $z^2 = 1 - r^2$, the hemisphere is described in cylindrical coordinates by

 $0 \le r \le 1, \qquad 0 \le \theta \le 2\pi, \qquad 0 \le z \le \sqrt{1 - r^2}.$

Using $x^2 + y^2 = r^2$ and the cylindrical volume element

$$dV = r \, dz d\theta dr,$$

we get that

$$I = \int_0^1 \int_0^{2\pi} \int_0^{\sqrt{1-r^2}} zr^2 \cdot r \, dz d\theta dr.$$

• (b) The hemisphere is described in spherical coordinates by

$$0 \le \rho \le 1, \qquad 0 \le \phi \le \frac{\pi}{2}, \qquad 0 \le \theta \le 2\pi.$$

Using $z = \rho \cos \phi$, $x^2 + y^2 = \rho^2 \sin^2 \phi$, and the spherical volume element

$$dV = \rho^2 \sin \phi \, d\theta d\phi d\rho,$$

we get that

$$I = \int_0^1 \int_0^{\pi/2} \int_0^{2\pi} \rho \cos \phi \cdot \rho^2 \sin^2 \phi \cdot \rho^2 \sin \phi \, d\theta d\phi d\rho$$

6. [10pts] Let R be closed, bounded region in the (x, y)-plane and f(x, y) an integrable function on R. Explain how $\int \int_R f \, dA$ is defined in terms of Riemann sums.

Solution.

• For every partition \mathcal{P} of R into rectangles R_1, R_2, \ldots, R_n , choose any point (x_j, y_j) in each rectangle R_j of the partition. Then

$$\int \int_{R} f dA = \lim_{\|\mathcal{P}\| \to 0} \sum_{j=1}^{n} f(x_j, y_j) \Delta A_j,$$

where $\|\mathcal{P}\|$ is the maximum side-length of the rectangles R_j in the partition \mathcal{P} and ΔA_j is the area of R_j .

Optional Remark. A precise way to state this definition is as follows. A function f(x, y) is integrable on R with

$$\int \int_R f dA = L$$

if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$\left|\sum_{j=1}^{n} f(x_j, y_j) \Delta A_j - L\right| < \epsilon$$

for every partition \mathcal{P} of R with $\|\mathcal{P}\| < \delta$ and every choice of points (x_j, y_j) in R_j .