LECTURE NOTES ON
APPLIED MATHEMATICS
METHODS AND MODELS

John K. Hunter
Department of Mathematics
University of California, Davis
June 17, 2009

Copyright © 2009 by John K. Hunter
Lecture 1. Introduction
1. Conservation laws 1
2. Constitutive equations 2
3. The KPP equation 3

Lecture 2. Dimensional Analysis, Scaling, and Similarity
1. Systems of units 11
2. Scaling 12
3. Nondimensionalization 13
4. Fluid mechanics 13
5. Stokes formula for the drag on a sphere 18
6. Kolmogorov’s 1941 theory of turbulence 22
7. Self-similarity 26
8. The porous medium equation 27
9. Continuous symmetries of differential equations 33

Lecture 3. The Calculus of Variations
1. Motion of a particle in a conservative force field 44
2. The Euler-Lagrange equation 49
3. Newton’s problem of minimal resistance 51
4. Constrained variational principles 57
5. Elastic rods 58
6. Buckling and bifurcation theory 61
7. Laplace’s equation 70
8. The Euler-Lagrange equation 74
9. The wave equation 77
10. Hamiltonian mechanics 77
11. Poisson brackets 80
12. Rigid body rotations 81
13. Hamiltonian PDEs 87
14. Path integrals 89

Lecture 4. Sturm-Liouville Eigenvalue Problems
1. Vibrating strings 96
2. The one-dimensional wave equation 99
3. Quantum mechanics 103
4. The one-dimensional Schrödinger equation 107
5. The Airy equation 117
6. Dispersive wave propagation 121
7. Derivation of the KdV equation for ion-acoustic waves 123
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Other Sturm-Liouville problems</td>
<td>129</td>
</tr>
<tr>
<td>Lecture 5. Stochastic Processes</td>
<td>131</td>
</tr>
<tr>
<td>1. Probability</td>
<td>131</td>
</tr>
<tr>
<td>2. Stochastic processes</td>
<td>138</td>
</tr>
<tr>
<td>3. Brownian motion</td>
<td>143</td>
</tr>
<tr>
<td>4. Brownian motion with drift</td>
<td>150</td>
</tr>
<tr>
<td>5. The Langevin equation</td>
<td>154</td>
</tr>
<tr>
<td>6. The stationary Ornstein-Uhlenbeck process</td>
<td>159</td>
</tr>
<tr>
<td>7. Stochastic differential equations</td>
<td>162</td>
</tr>
<tr>
<td>8. Financial models</td>
<td>169</td>
</tr>
<tr>
<td>Bibliography</td>
<td>175</td>
</tr>
</tbody>
</table>