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ABSTRACT. These are some brief notes on measure theory, concentrating on
Lebesgue measure on R™. Some missing topics I would have liked to have in-
cluded had time permitted are: the change of variable formula for the Lebesgue
integral on R™; absolutely continuous functions and functions of bounded vari-
ation of a single variable and their connection with Lebesgue-Stieltjes measures
on R; Radon measures on R™, and other locally compact Hausdorff topological
spaces, and the Riesz representation theorem for bounded linear functionals
on spaces of continuous functions; and other examples of measures, including
k-dimensional Hausdorff measure in R™, Wiener measure and Brownian mo-
tion, and Haar measure on topological groups. All these topics can be found
in the references.
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CHAPTER 1

Measures

Measures are a generalization of volume; the fundamental example is Lebesgue
measure on R™, which we discuss in detail in the next Chapter. Moreover, as
formalized by Kolmogorov (1933), measure theory provides the foundation of prob-
ability. Measures are important not only because of their intrinsic geometrical and
probabilistic significance, but because they allow us to define integrals.

This connection, in fact, goes in both directions: we can define an integral
in terms of a measure; or, in the Daniell-Stone approach, we can start with an
integral (a linear functional acting on functions) and use it to define a measure. In
probability theory, this corresponds to taking the expectation of random variables
as the fundamental concept from which the probability of events is derived.

In these notes, we develop the theory of measures first, and then define integrals.
This is (arguably) the more concrete and natural approach; it is also (unarguably)
the original approach of Lebesgue. We begin, in this Chapter, with some prelimi-
nary definitions and terminology related to measures on arbitrary sets. See Folland
[4] for further discussion.

1.1. Sets

We use standard definitions and notations from set theory and will assume the
axiom of choice when needed. The words ‘collection’ and ‘family’ are synonymous
with ‘set’ — we use them when talking about sets of sets. We denote the collection
of subsets, or power set, of a set X by P(X). The notation 2% is also used.

If E C X and the set X is understood, we denote the complement of F in X
by E¢ = X \ E. De Morgan’s laws state that

(UEQ> =) E:, (ﬂEa> =JE:
acl acl acl acl
We say that a collection
C={E,CX:acl}
of subsets of a set X, indexed by a set I, covers E C X if
UJE.DE.
acl

The collection C is disjoint if E, N Eg = & for a # p.
The Cartesian product, or product, of sets X, Y is the collection of all ordered
pairs

XxY={(zx,y):2€X,yeY}.

1



2 1. MEASURES

1.2. Topological spaces

A topological space is a set equipped with a collection of open subsets that
satisfies appropriate conditions.

DEFINITION 1.1. A topological space (X,7) is a set X and a collection T C
P(X) of subsets of X, called open sets, such that

(a) 9, X eT;
(b) if {U, € T : @ € I} is an arbitrary collection of open sets, then their
union
UUaeT
ael
is open;
(c) it {U; € T:i=1,2,...,N} is a finite collection of open sets, then their
intersection
N
ﬂ U, eT
i=1
is open.

The complement of an open set in X is called a closed set, and T is called a topology
on X.

1.3. Extended real numbers

It is convenient to use the extended real numbers
R = {-00} URU {cc}.

This allows us, for example, to talk about sets with infinite measure or non-negative
functions with infinite integral. The extended real numbers are totally ordered in
the obvious way: oo is the largest element, —oco is the smallest element, and real
numbers are ordered as in R. Algebraic operations on R are defined when they are
unambiguous e.g. oo + x = oo for every x € R except = —o0, but oo — oo is
undefined.

We define a topology on R in a natural way, making R homeomorphic to a
compact interval. For example, the function ¢ : R — [~1,1] defined by

1 ifx =00
dlx)=¢ z/V1i+a? if —oo<x< oo
-1 ifr=—-o00

is a homeomorphism.

A primary reason to use the extended real numbers is that upper and lower
bounds always exist. Every subset of R has a supremum (equal to oo if the subset
contains oo or is not bounded from above in R) and infimum (equal to —oco if the
subset contains —oo or is not bounded from below in R). Every increasing sequence
of extended real numbers converges to its supremum, and every decreasing sequence
converges to its infimum. Similarly, if {a,} is a sequence of extended real-numbers
then

limsup a,, = inf (sup ai) , lim inf a,, = sup (inf ai)
n—oo ne i>n n—o0 neN \i=n

both exist as extended real numbers.
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Every sum ) ;°, x; with non-negative terms z; > 0 converges in R (to oo if
x; = oo for some i € N or the series diverges in R), where the sum is defined by

ixi —sup{in:FCNiS ﬁnite}.

i=1 ieF

As for non-negative sums of real numbers, non-negative sums of extended real
numbers are unconditionally convergent (the order of the terms does not matter);
we can rearrange sums of non-negative extended real numbers

o0 o0 o0
D (wity) = @i+ i
i=1 i=1 i=1

and double sums may be evaluated as iterated single sums

oo
injzsup Z x5+ I C N x N is finite
=1 (i.§)€F

|P”18
17

i=1 \j=1

o0 o0
=2 2w

j=1 \i=1

Our use of extended real numbers is closely tied to the order and monotonicity
properties of R. In dealing with complex numbers or elements of a vector space,
we will always require that they are strictly finite.

1.4. Outer measures

As stated in the following definition, an outer measure is a monotone, countably
subadditive, non-negative, extended real-valued function defined on all subsets of
a set.

DEFINITION 1.2. An outer measure p* on a set X is a function
p' i P(X) = [0,00]
such that:

(a) p*(9) = 0;
(b) if EC F C X, then p*(E) < p*(F);
(c) if {F; C X :4i € N} is a countable collection of subsets of X, then

e (0z) <X
i=1 i=1

We obtain a statement about finite unions from a statement about infinite
unions by taking all but finitely many sets in the union equal to the empty set.
Note that p* is not assumed to be additive even if the collection {E;} is disjoint.
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1.5. o-algebras

A o-algebra on a set X is a collection of subsets of a set X that contains @ and
X, and is closed under complements, finite unions, countable unions, and countable
intersections.

DEFINITION 1.3. A o-algebra on a set X is a collection A of subsets of X such
that:
(a) @, X € A;
(b) if A € A then A° € A,
(c) if A; € Afor i € N then

[j A; € A, ﬁ A; e A.
i=1 i=1

From de Morgan’s laws, a collection of subsets is o-algebra if it contains @ and
is closed under the operations of taking complements and countable unions (or,
equivalently, countable intersections).

EXAMPLE 1.4. If X is a set, then {@, X} and P(X) are o-algebras on X; they
are the smallest and largest o-algebras on X, respectively.

Measurable spaces provide the domain of measures, defined below.

DEFINITION 1.5. A measurable space (X,.A) is a non-empty set X equipped
with a o-algebra A on X.

It is useful to compare the definition of a o-algebra with that of a topology in
Definition [[LT1 There are two significant differences. First, the complement of a
measurable set is measurable, but the complement of an open set is not, in general,
open, excluding special cases such as the discrete topology T = P(X). Second,
countable intersections and unions of measurable sets are measurable, but only
finite intersections of open sets are open while arbitrary (even uncountable) unions
of open sets are open. Despite the formal similarities, the properties of measurable
and open sets are very different, and they do not combine in a straightforward way.

If F is any collection of subsets of a set X, then there is a smallest o-algebra
on X that contains F, denoted by o(F).

DEFINITION 1.6. If F is any collection of subsets of a set X, then the o-algebra
generated by F is

o(F) = m{A CP(X): AD F and A is a o-algebra} .

This intersection is nonempty, since P(X) is a o-algebra that contains F, and
an intersection of o-algebras is a c-algebra. An immediate consequence of the
definition is the following result, which we will use repeatedly.

ProroOSITION 1.7. If F is a collection of subsets of a set X such that F C A
where A is a o-algebra on X, then o(F) C A.

Among the most important o-algebras are the Borel o-algebras on topological
spaces.

DEFINITION 1.8. Let (X, 7) be a topological space. The Borel o-algebra
B(X) =a(T)
is the o-algebra generated by the collection T of open sets on X.
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1.6. Measures

A measure is a countably additive, non-negative, extended real-valued function
defined on a o-algebra.

DEFINITION 1.9. A measure p on a measurable space (X, .A) is a function
w: A—10,00]
such that

(a) p(@) =0;
(b) if {A; € A: i€ N} is a countable disjoint collection of sets in A, then

w <U Ai) = Z/L(Az)

In comparison with an outer measure, a measure need not be defined on all
subsets of a set, but it is countably additive rather than countably subadditive.
A measure p on a set X is finite if u(X) < oo, and o-finite if X = (J,2; 4,
is a countable union of measurable sets A,, with finite measure, u(A,) < oco. A
probability measure is a finite measure with pu(X) = 1.

A measure space (X, A, ) consists of a set X, a o-algebra A on X, and a
measure /4 defined on A. When A and p are clear from the context, we will refer to

the measure space X. We define subspaces of measure spaces in the natural way.

DEFINITION 1.10. If (X, A, 1) is a measure space and E C X is a measurable
subset, then the measure subspace (E, A|j , i) is defined by restricting u to E:

Al ={ANE:Aec A}, plp(ANE)=puANE).

As we will see, the construction of nontrivial measures, such as Lebesgue mea-
sure, requires considerable effort. Nevertheless, there is at least one useful example
of a measure that is simple to define.

EXAMPLE 1.11. Let X be an arbitrary non-empty set. Define v : P(X) —
[0, o0] by
v(E) = number of elements in E,

where v(&) = 0 and v(F) = oo if E is not finite. Then v is a measure, called count-
ing measure on X. Every subset of X is measurable with respect to v. Counting
measure is finite if X is finite and o-finite if X is countable.

A useful implication of the countable additivity of a measure is the following
monotonicity result.

PROPOSITION 1.12. If {A; : i € N} is an increasing sequence of measurable
sets, meaning that A;11 D A;, then

(1.1) 7 (U Ai) = lim p(4)).
=1

If{A; : i € N} is a decreasing sequence of measurable sets, meaning that A; 41 C A;,
and p(Ay) < oo, then

(1.2) 7 (ﬂ Ai) = lim p(A;).
=1
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PRrOOF. If {4; : i € N} is an increasing sequence of sets and B; = A;11 \ A,
then {B; : i € N} is a disjoint sequence with the same union, so by the countable

additivity of u
I <U Ai) =p (U Bi) = ZN(Bi)-
i=1 i=1 i=1

; . ,
Moreover, since A; = J_; B;,

which implies that
j—o0

S n(B) = lim pu(4;)

and the first result follows.
If u(A1) < 0o and {A;} is decreasing, then {B; = A; \ A;} is increasing and

w(Bi) = p(Ar) — pu(As).

It follows from the previous result that

I (U Bl-) = lim p(B;) = pu(Ar) — lim p(A;).

i=1 e (e
Since . . . .
UBi:Al\ﬂAi; H(U&)—H(Al)—ﬂ(ﬂfli),
the result flozlllows. - - - O

EXAMPLE 1.13. To illustrate the necessity of the condition p(A;) < co in the
second part of the previous proposition, or more generally u(A,) < oo for some
n € N, consider counting measure v : P(N) — [0, 00] on N. If

A, ={keN:k>n},

then v(A4,) = oo for every n € N, so v(4,,) = oo as n — oo, but
) 4 =2, u(ﬂAn>:0.
n=1 n=1

1.7. Sets of measure zero

A set of measure zero, or a null set, is a measurable set N such that u(N) = 0.
A property which holds for all z € X \ N where N is a set of measure zero is said
to hold almost everywhere, or a.e. for short. If we want to emphasize the measure,
we say p-a.e. In general, a subset of a set of measure zero need not be measurable,
but if it is, it must have measure zero.

It is frequently convenient to use measure spaces which are complete in the
following sense. (This is, of course, a different sense of ‘complete’ than the one used
in talking about complete metric spaces.)

DEFINITION 1.14. A measure space (X, A, p) is complete if every subset of a
set of measure zero is measurable.
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Note that completeness depends on the measure p, not just the o-algebra
A. Any measure space (X, A, p) is contained in a uniquely defined completion
(X, A, Ti), which the smallest complete measure space that contains it and is given
explicitly as follows.

THEOREM 1.15. If (X, A, 11) is a measure space, define (X, A, ) by

A={AUM:Ac A, M C N where N € A satisfies u(N) = 0}

with I(A U M) = p(A). Then (X, A7) is a complete measure space such that
A D A and 11 is the unique extension of u to A.

PROOF. The collection A is a o-algebra. It is closed under complementation
because, with the notation used in the definition,

(AUM) = AN M€, M =N°U(N\M).
Therefore o
(AUM) = (A°NNYU (AN (N\M)) € A,

since AN N¢ € A and A°N (N \ M) C N. Moreover, A is closed under countable
unions because if 4; € A and M; C N; where u(N;) = 0 for each i € N, then

GAZ-UMi: <6A1> U <GMZ> € A,
=1 =1 =1

GAiEA, GMiCGNi, M(GNZ>=O
=1 =1 =1 =1

It is straightforward to check that 7z is well-defined and is the unique extension of
1 to a measure on A, and that (X, .4, ) is complete. O

since






CHAPTER 2

Lebesgue Measure on R"

Our goal is to construct a notion of the volume, or Lebesgue measure, of rather
general subsets of R™ that reduces to the usual volume of elementary geometrical
sets such as cubes or rectangles.

If £(R™) denotes the collection of Lebesgue measurable sets and

w: LR™) = [0, 00]

denotes Lebesgue measure, then we want £(R™) to contain all n-dimensional rect-
angles and p(R) should be the usual volume of a rectangle R. Moreover, we want
1 to be countably additive. That is, if

{4, € L(R™) : i € N}

is a countable collection of disjoint measurable sets, then their union should be

measurable and
K <U Ai) = Z/L(Az‘)-
i=1 i=1

The reason for requiring countable additivity is that finite additivity is too weak
a property to allow the justification of any limiting processes, while uncountable
additivity is too strong; for example, it would imply that if the measure of a set
consisting of a single point is zero, then the measure of every subset of R"™ would
be zero.

It is not possible to define the Lebesgue measure of all subsets of R™ in a
geometrically reasonable way. Hausdorff (1914) showed that for any dimension
n > 1, there is no countably additive measure defined on all subsets of R™ that is
invariant under isometries (translations and rotations) and assigns measure one to
the unit cube. He further showed that if n > 3, there is no such finitely additive
measure. This result is dramatized by the Banach-Tarski ‘paradox’: Banach and
Tarski (1924) showed that if n > 3, one can cut up a ball in R™ into a finite number
of pieces and use isometries to reassemble the pieces into a ball of any desired volume
e.g. reassemble a pea into the sun. The ‘construction’ of these pieces requires the
axiom of choice[] Banach (1923) also showed that if n = 1 or n = 2 there are
finitely additive, isometrically invariant extensions of Lebesgue measure on R™ that
are defined on all subsets of R™, but these extensions are not countably additive.
For a detailed discussion of the Banach-Tarski paradox and related issues, see [10].

The moral of these results is that some subsets of R™ are too irregular to define
their Lebesgue measure in a way that preserves countable additivity (or even finite
additivity in n > 3 dimensions) together with the invariance of the measure under

18010vay (1970) proved that one has to use the axiom of choice to obtain non-Lebesgue
measurable sets.
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isometries. We will show, however, that such a measure can be defined on a o-
algebra L(R"™) of Lebesgue measurable sets which is large enough to include all set
of ‘practical’ importance in analysis. Moreover, as we will see, it is possible to define
an isometrically-invariant, countably sub-additive outer measure on all subsets of
R™.

There are many ways to construct Lebesgue measure, all of which lead to the
same result. We will follow an approach due to Carathéodory, which generalizes
to other measures: We first construct an outer measure on all subsets of R™ by
approximating them from the outside by countable unions of rectangles; we then
restrict this outer measure to a o-algebra of measurable subsets on which it is count-
ably additive. This approach is somewhat asymmetrical in that we approximate
sets (and their complements) from the outside by elementary sets, but we do not
approximate them directly from the inside.

Jones [5], Stein and Shakarchi [8], and Wheeler and Zygmund [11] give detailed
introductions to Lebesgue measure on R™. Cohn [2] gives a similar development to
the one here, and Evans and Gariepy [3] discuss more advanced topics.

2.1. Lebesgue outer measure

We use rectangles as our elementary sets, defined as follows.

DEFINITION 2.1. An n-dimensional, closed rectangle with sides oriented parallel
to the coordinate axes, or rectangle for short, is a subset R C R™ of the form

R = [a1,b1] X [ag, b2] X+ X [an, by]
where —oo < a; < b; < oo fori=1,...,n. The volume pu(R) of R is
/L(R) = (bl — al)(bg — ag) e (bn — an).

If n =1 or n =2, the volume of a rectangle is its length or area, respectively.
We also consider the empty set to be a rectangle with p(@) = 0. We denote the
collection of all n-dimensional rectangles by R(R™), or R when n is understood,
and then R +— u(R) defines a map

u: R(R™) — [0, 00).

The use of this particular class of elementary sets is for convenience. We could
equally well use open or half-open rectangles, cubes, balls, or other suitable ele-
mentary sets; the result would be the same.

DEFINITION 2.2. The outer Lebesgue measure p*(E) of a subset E C R"™, or
outer measure for short, is

(2.1) 1 (E) = inf {Z u(R)): ECUX, R, Ri € R(R”)}

where the infimum is taken over all countable collections of rectangles whose union
contains E. The map

p*: P(R™) — [0, 0], w i Ew p*(E)

is called outer Lebesgue measure.
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In this definition, a sum > >, u(R;) and p*(E) may take the value co. We do
not require that the rectangles R; are disjoint, so the same volume may contribute
to multiple terms in the sum on the right-hand side of (21I); this does not affect
the value of the infimum.

EXAMPLE 2.3. Let E = QN [0,1] be the set of rational numbers between 0
and 1. Then E has outer measure zero. To prove this, let {¢; : i € N} be an
enumeration of the points in E. Given € > 0, let R; be an interval of length €/2°
which contains ¢;. Then E C |J;2, p(R;) so

0<p(E) < Zu(R» =e.

Hence p*(E) = 0 since € > 0 is arbitrary. The same argument shows that any
countable set has outer measure zero. Note that if we cover E by a finite collection
of intervals, then the union of the intervals would have to contain [0, 1] since F is
dense in [0, 1] so their lengths sum to at least one.

The previous example illustrates why we need to use countably infinite collec-
tions of rectangles, not just finite collections, to define the outer measureld The
‘countable e-trick’ used in the example appears in various forms throughout measure
theory.

Next, we prove that p* is an outer measure in the sense of Definition

THEOREM 2.4. Lebesgue outer measure u* has the following properties.
(a') M*(g) =0;
(b) if ECF, then p*(E) < p*(F);
(c) if {E; C R™:i € N} is a countable collection of subsets of R™, then

w <U Ez-) <> wt(E).
i=1 =1

PRrROOF. It follows immediately from Definition [Z2lthat p*(@) = 0, since every
collection of rectangles covers @, and that u*(E) < pu*(F) if E C F since any cover
of F' covers E.

The main property to prove is the countable subadditivity of u*. If u* (E;) = oo
for some i € N, there is nothing to prove, so we may assume that p* (F;) is finite
for every i € N. If € > 0, there is a countable covering {R;; : j € N} of E; by
rectangles R;; such that

€

?7 E; C UR”

> u(Rij) < (B +
j=1 j=1
Then {R;; : i,j € N} is a countable covering of
E=JE
i=1

2The use of finitely many intervals leads to the notion of the Jordan content of a set, intro-
duced by Peano (1887) and Jordan (1892), which is closely related to the Riemann integral; Borel
(1898) and Lebesgue (1902) generalized Jordan’s approach to allow for countably many intervals,
leading to Lebesgue measure and the Lebesgue integral.
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and therefore

pH(E) < Y p(Rij) <> {u*(Ez‘) + ;} => W(E)+e
ij=1 i=1 i=1

Since € > 0 is arbitrary, it follows that
W (B) <Y (B
i=1
which proves the result. O

2.2. Outer measure of rectangles

In this section, we prove the geometrically obvious, but not entirely trivial, fact
that the outer measure of a rectangle is equal to its volume. The main point is to
show that the volumes of a countable collection of rectangles that cover a rectangle
R cannot sum to less than the volume of R[]

We begin with some combinatorial facts about finite covers of rectangles [§].
We denote the interior of a rectangle R by R°, and we say that rectangles R, S
are almost disjoint if R°N.S° = &, meaning that they intersect at most along their
boundaries. The proofs of the following results are cumbersome to write out in
detail (it’s easier to draw a picture) but we briefly explain the argument.

LEMMA 2.5. Suppose that
R=1 xIy x---x1I,

is an n-dimensional rectangle where each closed, bounded interval I; C R is an
almost disjoint union of closed, bounded intervals {I; ; CR:j=1,...,N;},

N;
L=JL,;
j=1

Define the rectangles
(2.2) Sirgaegn = Tigy X Ia gy X - X In .
Then
Ny N,
PR =" p(Sinin) -
J1=1 Jn=1

PROOF. Denoting the length of an interval I by |I|, using the fact that

N;
LED NI
j=1

3As a partial justification of the need to prove this fact, note that it would not be true if we
allowed uncountable covers, since we could cover any rectangle by an uncountable collection of
points all of whose volumes are zero.
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and expanding the resulting product, we get that
u(R) = L% .. | L]

Nl N2 Nn
= > 1hl Z Lol | | DD
=1 =1 =1

Nl N2
Z Z Z |Il7.71||12;]2| | ;]nl

Ji1=1j2=1 Jn=1
N1 N>

- § : § : E : 31J2 Jn .
Jj1=1j2=1 Jn=1

O

PROPOSITION 2.6. If a rectangle R is an almost disjoint, finite union of rect-
angles {R1, Rz, ..., RN}, then

N
(2.3) p(R) = (R

If R is covered by rectangles {R1, Ra, ..., Ry}, which need not be disjoint, then

N
(2.4) n(R) < ZM(RJ

PROOF. Suppose that
R = [al,bl] X [ag,bg] X oo X [an,bn]

is an almost disjoint union of the rectangles { Ry, Ra, ..., Ry }. Then by ‘extending
the sides’ of the R;, we may decompose R into an almost disjoint collection of
rectangles

{Sjlj2---jn 01 S ]1 S Nl fOI‘ 1 S 7 S n}
that is obtained by taking products of subintervals of partitions of the coordinate
intervals [a;, b;] into unions of almost disjoint, closed subintervals. Explicitly, we
partition [a;, b;] into

a; =c0<ci1 <o <N = by, Iij = [cij—1,Cij)-

where the ¢; ; are obtained by ordering the left and right ¢th coordinates of all faces
of rectangles in the collection {R1, Ra,..., Ry}, and define rectangles S;, j,.. j, as
in (22]).

Each rectangle R; in the collection is an almost disjoint union of rectangles
S js...jn» and their union contains all such products exactly once, so by applying
Lemma to each R; and summing the results we see that

N
;u( Z Z Siviain) -

Jji=1 Jn=1
Similarly, R is an almost disjoint union of all the rectangles S; so Lemma [Z.5]

implies that

1J2---Jn>

N,

: : z : .71.72 ]n

J1=1 Jn=1
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and (Z3) follows.
If a finite collection of rectangles {R1, Ra,..., Rn} covers R, then there is a
almost disjoint, finite collection of rectangles {S, Sa2,..., Sy} such that

M M N
R= U Si ZM(Si) < Z/L(Rz)

To obtain the S;, we replace R; by the rectangle R N R;, and then decompose
these possibly non-disjoint rectangles into an almost disjoint, finite collection of
sub-rectangles with the same union; we discard ‘overlaps’ which can only reduce
the sum of the volumes. Then, using ([2.3]), we get

M N
p(R) = p(Si) <> p(Ri),
=1 =1

which proves (2.4). O

The outer measure of a rectangle is defined in terms of countable covers. We
reduce these to finite covers by using the topological properties of R™.

PROPOSITION 2.7. If R is a rectangle in R™, then u*(R) = p(R).

PROOF. Since {R} covers R, we have u*(R) < u(R), so we only need to prove
the reverse inequality.

Suppose that {R; : ¢ € N} is a countably infinite collection of rectangles that
covers R. By enlarging R; slightly we may obtain a rectangle S; whose interior Sy
contains R; such that

p(Si) < p(R;) + ;

Then {Sy : ¢ € N} is an open cover of the compact set R, so it contains a finite
subcover, which we may label as {S7,55,...,5%}. Then {S1,S52,...,SNn} covers
R and, using ([Z4]), we find that

N [e'S)
p(R) < Y- n(S0) < 3o {u(R) + 55} < X n(R) +e.

i=1

Since € > 0 is arbitrary, we have
W(R) < p(Ry)
i=1
and it follows that pu(R) < u*(R). O

2.3. Carathéodory measurability

We will obtain Lebesgue measure as the restriction of Lebesgue outer measure
to Lebesgue measurable sets. The construction, due to Carathéodory, works for any
outer measure, as given in Definition [[L2] so we temporarily consider general outer
measures. We will return to Lebesgue measure on R" at the end of this section.

The following is the Carathéodory definition of measurability.

DEFINITION 2.8. Let p* be an outer measure on a set X. A subset A C X is
Carathéodory measurable with respect to u*, or measurable for short, if

(2.5) iw(E) = p*(ENA) + ' (BN AY)
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for every subset £ C X.

We also write E N A° as E\ A. Thus, a measurable set A splits any set
FE into disjoint pieces whose outer measures add up to the outer measure of F.
Heuristically, this condition means that a set is measurable if it divides other sets
in a ‘nice’ way. The regularity of the set E being divided is not important here.
Since p* is subadditive, we always have that

p(E) < p(ENA)+p"(ENA%).
Thus, in order to prove that A C X is measurable, it is sufficient to show that
p(E) Z p*(ENA) + p"(ENA%)

for every F C X, and then we have equality as in (2.3)).
Definition [2.8]is perhaps not the most intuitive way to define the measurability
of sets, but it leads directly to the following key result.

THEOREM 2.9. The collection of Carathéodory measurable sets with respect to
an outer measure (¥ is a o-algebra, and the restriction of u* to the measurable sets
18 4 measure.

PrROOF. It follows immediately from ([2.5]) that @ is measurable and the comple-
ment of a measurable set is measurable, so to prove that the collection of measurable
sets is a g-algebra, we only need to show that it is closed under countable unions.
We will prove at the same time that p* is countably additive on measurable sets;
since p*(@) = 0, this will prove that the restriction of p* to the measurable sets is
a measure.

First, we prove that the union of measurable sets is measurable. Suppose that
A, B are measurable and F C X. The measurability of A and B implies that

w*(E) = u*(E N A) + 1 (E 0 A%
(2.6) =p"(ENANDB)+pu (ENANB°)
+u (ENA°NB) + p*(ENA°N B°).
Since AUB = (AN B)U (AN B®) U (A°N B) and p* is subadditive, we have
wWENAUB)<p (ENANB)+ " (ENANB®) +p* (ENA°NB).
The use of this inequality and the relation A°N B¢ = (AU B)¢ in (2.6) implies that
p(E) 2 p*(EN(AUB)) + p*(EN (AU B)Y)

so AU B is measurable.
Moreover, if A is measurable and AN B = @, then by taking £ = AU B in
@3), we see that

1 (AU B) = i (A) + 1" (B).

Thus, the outer measure of the union of disjoint, measurable sets is the sum of
their outer measures. The repeated application of this result implies that the finite
union of measurable sets is measurable and p* is finitely additive on the collection
of measurable sets.

Next, we we want to show that the countable union of measurable sets is
measurable. It is sufficient to consider disjoint unions. To see this, note that if
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{4; :i € N} is a countably infinite collection of measurable sets, then

Ai, fOI‘j Z 1

Il
.
Il ( <.
—

form an increasing sequence of measurable sets, and
Cj=Bj\Bj_1 forj>2, Cy =

form a disjoint measurable collection of sets. Moreover

Uai=Jc.
i=1 j=1

Suppose that {A; : i € N} is a countably infinite, disjoint collection of measur-
able sets, and define

o0

B _UA“ B=|]JA.
=1

Let E C X. Since A; is measurable and B; = A; U B;_ is a disjoint union (for
Jj=2),
(BN Bj) =p"(ENB;jNAj) +p"(ENB;N Aj),
= /L*(E N AJ) +u (EN Bj_l).
Also p*(E N By) = p*(E N A;p). It follows by induction that

J
pHENB)) = Y i (B0 A,
=1

Since Bj; is a finite union of measurable sets, it is measurable, so
i(E) = p*(EN By) + 1 (BN BY),

and since Bf D B¢, we have

It follows that

J
Z (E N A;) + 1 (En B°).

Taking the limit of this 1nequahty as j — oo and using the subadditivity of u*, we
get
W (B) = S 1B A) + p*(E 0 BY)
i=1
(2.7) >u* EmAl-> + u*(EnNB°)
i=1

*(ENB) + p*(EN B
(
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Therefore, we must have equality in (27)), which shows that B = (J;=, A; is mea-

surable. Moreover,
W (U En Ai) => w(ENA,
i=1 i=1
so taking E = X, we see that p* is countably additive on the o-algebra of measur-

able sets. O

Returning to Lebesgue measure on R™, the preceding theorem shows that we
get a measure on R™ by restricting Lebesgue outer measure to its Carathéodory-
measurable sets, which are the Lebesgue measurable subsets of R™.

DEFINITION 2.10. A subset A C R" is Lebesgue measurable if
W(E) = 1" (BN A) + 1" (BN A°)

for every subset F C R™. If L(R™) denotes the o-algebra of Lebesgue measurable
sets, the restriction of Lebesgue outer measure p* to the Lebesgue measurable sets

R ['(Rn) - [07 OO]? = M*lﬁ(R")
is called Lebesgue measure.

From Proposition 2.7 this notation is consistent with our previous use of u to
denote the volume of a rectangle. If £ C R™ is any measurable subset of R™, then
we define Lebesgue measure on E by restricting Lebesgue measure on R” to F, as
in Definition [T, and denote the corresponding o-algebra of Lebesgue measurable
subsets of E by L(FE).

Next, we prove that all rectangles are measurable; this implies that £L(R") is a
‘large’ collection of subsets of R™. Not all subsets of R™ are Lebesgue measurable,
however; e.g. see Example 217 below.

PROPOSITION 2.11. FEvery rectangle is Lebesgue measurable.

PrROOF. Let R be an n-dimensional rectangle and E C R™. Given € > 0, there
is a cover {R; : i € N} of E by rectangles R; such that

p(E) +e2 Y (k).
i=1

We can decompose R; into an almost disjoint, finite union of rectangles
{Ria S’i,lv R S’L,N}
such that

N
Ri:Ri+USi,j7 Ri:RiﬁRCR, Siijﬁ.
j=1
From (23),
N
w(R) = p(Ri) + > p(Si ).
J=1

Using this result in the previous sum, relabeling the S; ; as S;, and rearranging the
resulting sum, we get that

p(E) + ez ZN(RO + Zu(si)-



18 2. LEBESGUE MEASURE ON R"™

Since the rectangles {R; : i € N} cover EN R and the rectangles {S; : i € N} cover
E N R°, we have

“(ENR) < Z “(EN R Z
Hence,
W (E)+e>pu (ENR)+ p* (ENRER°).
Since € > 0 is arbitrary, it follows that
pi(E) z p*(ENR) 4+ p*(EN R,
which proves the result. O

An open rectangle R° is a union of an increasing sequence of closed rectangles
whose volumes approach u(R); for example

(al,bl) X (ag,bg) X oo X (an,bn)

= G[a1+%’bl_%] X [ag—l—%,bg—%] X oo X an + =, by —
Thus, R° is measurable and, from Proposition [[.12]
u(R%) = u(R).
Moreover if 9R = R\ R° denotes the boundary of R, then
1(OR) = p(R) — p(R°) =0

2.4. Null sets and completeness

Sets of measure zero play a particularly important role in measure theory and
integration. First, we show that all sets with outer Lebesgue measure zero are
Lebesgue measurable.

PROPOSITION 2.12. If N C R™ and p*(N) =0, then N is Lebesgue measurable,
and the measure space (R™, L(R™), 1) is complete.

Proor. If N C R™ has outer Lebesgue measure zero and £ C R"™, then
0<p (ENN) <p*(N) =0,
so *(E N N) = 0. Therefore, since E D ENN€,
1 (B) = (BN N°) = p* (B0 N) + (B 1 N°),

which shows that N is measurable. If N is a measurable set with u(N) = 0 and
M C N, then p*(M) = 0, since p*(M) < u(N). Therefore M is measurable and
(R™, L(R™), ) is complete. O

In view of the importance of sets of measure zero, we formulate their definition
explicitly.

DEFINITION 2.13. A subset N C R™ has Lebesgue measure zero if for every
€ > 0 there exists a countable collection of rectangles {R; : i € N} such that

NCGRi, iN(R)<€
i=1

i=1
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The argument in Example shows that every countable set has Lebesgue
measure zero, but sets of measure zero may be uncountable; in fact the fine structure
of sets of measure zero is, in general, very intricate.

EXAMPLE 2.14. The standard Cantor set, obtained by removing ‘middle thirds’
from [0, 1], is an uncountable set of zero one-dimensional Lebesgue measure.

ExXAMPLE 2.15. The z-axis in R?
A={(z,0) eR?*: 2 € R}

has zero two-dimensional Lebesgue measure. More generally, any linear subspace of
R™ with dimension strictly less than n has zero n-dimensional Lebesgue measure.

2.5. Translational invariance

An important geometric property of Lebesgue measure is its translational in-
variance. If A C R™ and h € R™, let

A+h={z+h:ze A}
denote the translation of A by h.
ProroSITION 2.16. If A C R™ and h € R™, then
WA+ h) = i (A),
and A + h is measurable if and only if A is measurable.

PROOF. The invariance of outer measure p* result is an immediate consequence
of the definition, since {R; + h : i € N} is a cover of A + h if and only if {R; :
i € N} is a cover of A, and u(R + h) = p(R) for every rectangle R. Moreover, the
Carathéodory definition of measurability is invariant under translations since

(E+h)N(A+h)=(ENA)+h.
(]

The space R™ is a locally compact topological (abelian) group with respect to
translation, which is a continuous operation. More generally, there exists a (left or
right) translation-invariant measure, called Haar measure, on any locally compact
topological group; this measure is unique up to a scalar factor.

The following is the standard example of a non-Lebesgue measurable set, due
to Vitali (1905).

EXAMPLE 2.17. Define an equivalence relation ~ on R by z ~y if x —y € Q.
This relation has uncountably many equivalence classes, each of which contains a
countably infinite number of points and is dense in R. Let E C [0,1] be a set that
contains exactly one element from each equivalence class, so that R is the disjoint
union of the countable collection of rational translates of E. Then we claim that F
is not Lebesgue measurable.

To show this, suppose for contradiction that F is measurable. Let {¢; : ¢ € N}
be an enumeration of the rational numbers in the interval [-1, 1] and let E; = E+¢;
denote the translation of E by ¢;. Then the sets E; are disjoint and

[0,1) C [j E;, Cc[-1,2].
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The translational invariance of Lebesgue measure implies that each E; is measurable
with p(E;) = u(E), and the countable additivity of Lebesgue measure implies that

1< w(E;) <3,
i=1

But this is impossible, since Y=, p(E;) is either 0 or co, depending on whether if
w(E) =0 or u(E) > 0.

The above example is geometrically simpler on the circle T = R/Z. When
reduced modulo one, the sets {E; : ¢ € N} partition T into a countable union of
disjoint sets which are translations of each other. If the sets were measurable, their
measures would be equal so they must sum to 0 or co, but the measure of T is one.

2.6. Borel sets

The relationship between measure and topology is not a simple one. In this
section, we show that all open and closed sets in R™, and therefore all Borel sets
(i.e. sets that belong to the o-algebra generated by the open sets), are Lebesgue
measurable.

Let T(R™) C P(R™) denote the standard metric topology on R™ consisting of
all open sets. That is, G C R™ belongs to 7 (R™) if for every x € G there exists
r > 0 such that B,(z) C G, where

Br(z) ={y eR": [z —y[ <7}
is the open ball of radius r centered at © € R™ and |- | denotes the Euclidean norm.

DEFINITION 2.18. The Borel o-algebra B(R™) on R" is the o-algebra generated
by the open sets, B(R™) = o (T (R™)). A set that belongs to the Borel o-algebra is
called a Borel set.

Since o-algebras are closed under complementation, the Borel o-algebra is also
generated by the closed sets in R™. Moreover, since R" is o-compact (i.e. it is a
countable union of compact sets) its Borel o-algebra is generated by the compact
sets.

REMARK 2.19. This definition is not constructive, since we start with the power
set of R™ and narrow it down until we obtain the smallest o-algebra that contains
the open sets. It is surprisingly complicated to obtain B(R"™) by starting from
the open or closed sets and taking successive complements, countable unions, and
countable intersections. These operations give sequences of collections of sets in R™

(2.8) GCGs CGs5 CGsp5 C oy FCF,CF,5 CFs556C...,

where G denotes the open sets, F' the closed sets, ¢ the operation of countable
unions, and § the operation of countable intersections. These collections contain
each other; for example, F, D G and G§ D F. This process, however, has to
be repeated up to the first uncountable ordinal before we obtain B(R™). This is
because if, for example, {A; : i € N} is a countable family of sets such that

A1€G5\G, A2€G50—\G5, A3€G§U§\G5g,...
and so on, then there is no guarantee that |J;2; A; or ;= A; belongs to any of

the previously constructed families. In general, one only knows that they belong to
the w + 1 iterates Gso5...0 Or Gsos...s5, respectively, where w is the ordinal number
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of N. A similar argument shows that in order to obtain a family which is closed
under countable intersections or unions, one has to continue this process until one
has constructed an uncountable number of families.

To show that open sets are measurable, we will represent them as countable
unions of rectangles. Every open set in R is a countable disjoint union of open
intervals (one-dimensional open rectangles). When n > 2, it is not true that every
open set in R™ is a countable disjoint union of open rectangles, but we have the
following substitute.

PROPOSITION 2.20. Every open set in R™ is a countable union of almost disjoint
rectangles.

PROOF. Let G C R™ be open. We construct a family of cubes (rectangles of
equal sides) as follows. First, we bisect R™ into almost disjoint cubes {Q; : i € N}
of side one with integer coordinates. If ); C G, we include @; in the family, and
if @; is disjoint from G, we exclude it. Otherwise, we bisect the sides of @; to
obtain 2™ almost disjoint cubes of side one-half and repeat the procedure. Iterating
this process arbitrarily many times, we obtain a countable family of almost disjoint
cubes.

The union of the cubes in this family is contained in G, since we only include
cubes that are contained in G. Conversely, if z € G, then since G is open some suf-
ficiently small cube in the bisection procedure that contains z is entirely contained
in G, and the largest such cube is included in the family. Hence the union of the
family contains G, and is therefore equal to G. O

In fact, the proof shows that every open set is an almost disjoint union of dyadic
cubes.

PROPOSITION 2.21. The Borel algebra B(R™) is generated by the collection of
rectangles R(R™). Every Borel set is Lebesgue measurable.

PROOF. Since R is a subset of the closed sets, we have o(R) C B. Conversely,
by the previous proposition, o(R) D T, so o(R) D o(7) = B, and therefore
B = o(R). From Proposition 211 we have R C L. Since L is a o-algebra, it
follows that o(R) C £, so B C L. O

Note that if -
G=JR
i=1

is a decomposition of an open set GG into an almost disjoint union of closed rectan-
gles, then

o0
GoJR
i=1
is a disjoint union, and therefore

D u(RY) < u(G) <D pl(Ry).
i=1 i=1
Since p(RY) = u(R;), it follows that

n(G) = Z (k)
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for any such decomposition and that the sum is independent of the way in which
G is decomposed into almost disjoint rectangles.

The Borel o-algebra B is not complete and is strictly smaller than the Lebesgue
o-algebra L. In fact, one can show that the cardinality of B is equal to the cardinal-
ity ¢ of the real numbers, whereas the cardinality of £ is equal to 2°. For example,
the Cantor set is a set of measure zero with the same cardinality as R and every
subset of the Cantor set is Lebesgue measurable.

We can obtain examples of sets that are Lebesgue measurable but not Borel
measurable by considering subsets of sets of measure zero. In the following example
of such a set in R, we use some properties of measurable functions which will be
proved later.

EXAMPLE 2.22. Let f : [0,1] — [0, 1] denote the standard Cantor function and
define ¢ : [0,1] — [0, 1] by

9(y) = inf{z € [0,1] : f(x) = y}.
Then ¢ is an increasing, one-to-one function that maps [0, 1] onto the Cantor set
C. Since g is increasing it is Borel measurable, and the inverse image of a Borel
set under ¢ is Borel. Let E C [0,1] be a non-Lebesgue measurable set. Then
F = g(FE) C C is Lebesgue measurable, since it is a subset of a set of measure zero,
but F is not Borel measurable, since if it was E = g~ !(F) would be Borel.

Other examples of Lebesgue measurable sets that are not Borel sets arise from
the theory of product measures in R” for n > 2. For example, let N = E x {0} C R?
where F C R is a non-Lebesgue measurable set in R. Then N is a subset of the
r-axis, which has two-dimensional Lebesgue measure zero, so N belongs to £(R?)
since Lebesgue measure is complete. One can show, however, that if a set belongs
to B(R?) then every section with fixed z or y coordinate, belongs to B(R); thus, N
cannot belong to B(R?) since the y = 0 section E is not Borel.

As we show below, £(R™) is the completion of B(R™) with respect to Lebesgue
measure, meaning that we get all Lebesgue measurable sets by adjoining all subsets
of Borel sets of measure zero to the Borel o-algebra and taking unions of such sets.

2.7. Borel regularity

Regularity properties of measures refer to the possibility of approximating in
measure one class of sets (for example, nonmeasurable sets) by another class of
sets (for example, measurable sets). Lebesgue measure is Borel regular in the sense
that Lebesgue measurable sets can be approximated in measure from the outside
by open sets and from the inside by closed sets, and they can be approximated
by Borel sets up to sets of measure zero. Moreover, there is a simple criterion for
Lebesgue measurability in terms of open and closed sets.

The following theorem expresses a fundamental approximation property of
Lebesgue measurable sets by open and compact sets. Equations (2.9]) and (2.10)
are called outer and inner regularity, respectively.

THEOREM 2.23. If A C R"™, then
(2.9) w*(A) =inf {u(G): A C G, G open},
and if A is Lebesgue measurable, then

(2.10) w(A) =sup{u(K): K C A, K compact} .
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PRrROOF. First, we prove ([29). The result is immediate if p*(A) = oo, so we
suppose that p*(A) is finite. If A C G, then p*(A4) < u(G), so

w*(A) <inf{u(G): ACG, G open},
and we just need to prove the reverse inequality,
(2.11) w*(A) > inf {u(G): A C G, G open}.
Let € > 0. There is a cover {R; : i € N} of A by rectangles R; such that

> n(R:) <t (A) + %
=1

Let S; be an rectangle whose interior S7 contains R; such that

w(Si) < p(R;) +

Then the collection of open rectangles {S? : i € N} covers A and

G= 635
=1

is an open set that contains A. Moreover, since {S; : i € N} covers G,

u(@) < 3 u(S) < 3 p(R) + 5.

€
2i+1"

and therefore
(2.12) w(G) < p*(A) +e
It follows that
inf {u(G) : A C G, G open} < p*(A) + ¢,
which proves (ZI1)) since € > 0 is arbitrary.
Next, we prove (ZI0). If K C A, then u(K) < u(A4), so

sup{u(K): K C A, K compact} < u(A).
Therefore, we just need to prove the reverse inequality,
(2.13) u(A) <sup{u(K): K C A, K compact} .

To do this, we apply the previous result to A° and use the measurability of A.

First, suppose that A is a bounded measurable set, in which case u(A) < oco.
Let FF C R™ be a compact set that contains A. By the preceding result, for any
€ > 0, there is an open set G D F'\ A such that

w(G) < p(F\A) +e

Then K = F\ G is a compact set such that K C A. Moreover, F C K UG and
F=AU(F\A),so

W(F) < p(K) + (@), p(F) = p(A) + p(F\ A).
It follows that

u(A) = p(F) — p(F\ A)
< u(F) = p(G) +e
< uK) + e
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which implies ([Z.I3)) and proves the result for bounded, measurable sets.
Now suppose that A is an unbounded measurable set, and define

(2.14) Ay ={z e A:|z|<k}.
Then {Ay : k € N} is an increasing sequence of bounded measurable sets whose
union is A, so

(2.15) w(Ag) 1T u(A) as k — oo.

If u(A) = oo, then pu(Ag) = oo as k — oo. By the previous result, we can find a
compact set K C Ap C A such that

p(Ky) +1 > p(Ax)
so that u(K}) — oo. Therefore
sup {u(K): K C A, K compact} = oo,

which proves the result in this case.
Finally, suppose that A is unbounded and p(A4) < oco. From (2I5), for any
€ > 0 we can choose k € N such that

€
n(A) < p(Ag) + 3
Moreover, since Ay is bounded, there is a compact set K C Ay such that

p(AL) < u(K) + 5.

Therefore, for every € > 0 there is a compact set K C A such that
1(A) < u(K) + e,
which gives (ZI3)), and completes the proof. O

It follows that we may determine the Lebesgue measure of a measurable set in
terms of the Lebesgue measure of open or compact sets by approximating the set
from the outside by open sets or from the inside by compact sets.

The outer approximation in (2.9]) does not require that A is measurable. Thus,
for any set A C R", given € > 0, we can find an open set G O A such that
w(G) — p*(A) < e. If A is measurable, we can strengthen this condition to get
that u*(G \ A) < ¢ in fact, this gives a necessary and sufficient condition for
measurability.

THEOREM 2.24. A subset A C R™ is Lebesque measurable if and only if for
every € > 0 there is an open set G D A such that

(2.16) PG\ A) < e

ProOOF. First we assume that A is measurable and show that it satisfies the
condition given in the theorem.

Suppose that p(A) < oo and let € > 0. From ([2.I2) there is an open set G D A
such that u(G) < p*(A) + e. Then, since A is measurable,

P (G\A) =p*(G) — p(GNA) = pu(G) — p*(A) <e,

which proves the result when A has finite measure.
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If u(A) = oo, define Ay, C A as in [ZI4), and let € > 0. Since Ay, is measurable
with finite measure, the argument above shows that for each & € N, there is an
open set Gy O Ay such that

€
;J,(Gk \ Ak) < 2_k

Then G = J;—; Gk is an open set that contains A, and

PG\ A) = (U G \A> <Y wH(GR\A) <D (G \ Ap) < e
k=1 k=1 k=1

Conversely, suppose that A C R™ satisfies the condition in the theorem. Let
€ > 0, and choose an open set G O A such that u*(G\ A) <e. If E C R", we have
ENA°=(ENG°)U(EN(G\ A)).

Hence, by the subadditivity and monotonicity of x* and the measurability of G,
p(ENA) +p (ENAY) <p (ENA) +p (ENGY) +u"(EN(G\ A))
SpHENG) +p (ENGY) +u"(G\ A)
< ' (E) +e.
Since € > 0 is arbitrary, it follows that
pr(E) Z p"(ENA) + p"(E N A%)
which proves that A is measurable. (|

This theorem states that a set is Lebesgue measurable if and only if it can be
approximated from the outside by an open set in such a way that the difference
has arbitrarily small outer Lebesgue measure. This condition can be adopted as
the definition of Lebesgue measurable sets, rather than the Carathéodory definition
which we have used c.f. [5], 8, 11].

The following theorem gives another characterization of Lebesgue measurable
sets, as ones that can be ‘squeezed’ between open and closed sets.

THEOREM 2.25. A subset A C R™ is Lebesque measurable if and only if for
every € > 0 there is an open set G and a closed set F' such that G D A D F and

(2.17) w(G\ F) <e.
If u(A) < oo, then F may be chosen to be compact.

ProOF. If A satisfies the condition in the theorem, then it follows from the
monotonicity of p* that u*(G\ A) < u(G\ F) < ¢, so A is measurable by Theo-
rem [2.24!

Conversely, if A is measurable then A€ is measurable, and by Theorem
given € > 0, there are open sets G D A and H D A€ such that

* € * c €
pGNA) <5, piHNAY) <3
Then, defining the closed set F' = H¢, we have G D A D F and

WG\ F) < 1" (G\ A)+ 1" (A\ F) = u* (G \ A) + " (H\ A%) < e.

Finally, suppose that u(A) < co and let € > 0. From Theorem 2:23] since A is
measurable, there is a compact set K C A such that p(A) < p(K) + €/2 and

HANK) = p(4) - p(K) < 3.
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As before, from Theorem [2.24] there is an open set G D A such that
w(G) < u(A) +€/2.
It follows that G D A D K and
WG\ K) = u(G\ A) + p(A\ K) < e,
which shows that we may take F' = K compact when A has finite measure. O

From the previous results, we can approximate measurable sets by open or
closed sets, up to sets of arbitrarily small but, in general, nonzero measure. By
taking countable intersections of open sets or countable unions of closed sets, we
can approximate measurable sets by Borel sets, up to sets of measure zero

DEFINITION 2.26. The collection of sets in R™ that are countable intersections
of open sets is denoted by G5(R™), and the collection of sets in R™ that are countable
unions of closed sets is denoted by Fi, (R™).

Gs and F, sets are Borel. Thus, it follows from the next result that every
Lebesgue measurable set can be approximated up to a set of measure zero by a
Borel set. This is the Borel regularity of Lebesgue measure.

THEOREM 2.27. Suppose that A C R™ is Lebesque measurable. Then there exist
sets G € Gs(R™) and F € F,(R™) such that

GDADF, WG\ A) =pu(A\F)=0.

PRrROOF. For each k € N, choose an open set G and a closed set Fj, such that
Gr D AD Fj, and

1
WG\ Fi) < &
Then
G=()Gr, F=JF
k=1 k=1
are G5 and F, sets with the required properties. (|

In particular, since any measurable set can be approximated up to a set of
measure zero by a Ggs or an F,, the complexity of the transfinite construction of
general Borel sets illustrated in (2.8)) is ‘hidden’ inside sets of Lebesgue measure
zero.

As a corollary of this result, we get that the Lebesgue o-algebra is the comple-
tion of the Borel o-algebra with respect to Lebesgue measure.

THEOREM 2.28. The Lebesgue o-algebra L(R™) is the completion of the Borel
o-algebra B(R™).

PROOF. Lebesgue measure is complete from Proposition2.12l By the previous
theorem, if A C R™ is Lebesgue measurable, then there is a F,, set F' C A such that
M = A\ F has Lebesgue measure zero. It follows by the approximation theorem
that there is a Borel set N € G5 with u(N) =0 and M C N. Thus, A= FUM
where ' € Band M C N € B with u(N) = 0, which proves that £(R™) is the
completion of B(R™) as given in Theorem O
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2.8. Linear transformations

The definition of Lebesgue measure is not rotationally invariant, since we used
rectangles whose sides are parallel to the coordinate axes. In this section, we show
that the resulting measure does not, in fact, depend upon the direction of the
coordinate axes and is invariant under orthogonal transformations. We also show
that Lebesgue measure transforms under a linear map by a factor equal to the
absolute value of the determinant of the map.

As before, we use u* to denote Lebesgue outer measure defined using rectangles
whose sides are parallel to the coordinate axes; a set is Lebesgue measurable if it
satisfies the Carathéodory criterion (28] with respect to this outer measure. If
T :R™ — R" is a linear map and E C R™, we denote the image of E under T by

TE={TxecR":z € E}.

First, we consider the Lebesgue measure of rectangles whose sides are not paral-
lel to the coordinate axes. We use a tilde to denote such rectangles by R; we denote
closed rectangles whose sides are parallel to the coordinate axes by R as before.
We refer to R and R as oblique and parallel rectangles, respectively. We denote
the volume of a rectangle R by ’U(R), i.e. the product of the lengths of its sides, to
avoid confusion with its Lebesgue measure ;(R). We know that u(R) = v(R) for
parallel rectangles, and that R is measurable since it is closed, but we have not yet
shown that u(R) = v(R) for oblique rectangles.

More explicitly, we regard R™ as a Euclidean space equipped with the standard
inner product,

n
(xay)zleylv $:($1,$2,...,In), y:(ylvaa"'vyn)'
1=1

If {e1,ea,...,e,} is the standard orthonormal basis of R™,
er=(1,0,...,0), ex=(0,1,...,0),...en = (0,0,...,1),

and {€1, €3, ..., €, } is another orthonormal basis, then we use R to denote rectangles
whose sides are parallel to {e;} and R to denote rectangles whose sides are parallel
to {&;}. The linear map @ : R™ — R™ defined by Qe; = &; is orthogonal, meaning
that QT = Q! and

(Qz, Qy) = (z,y) for all x,y € R™.

Since () preserves lengths and angles, it maps a rectangle R to a rectangle R= QR

such that v(R) = v(R).
We will use the following lemma.

LEMMA 2.29. If an oblique rectangle R contains a finite almost disjoint collec-
tion of parallel rectangles { Ry, Ra, ..., RN} then

Z v(R;) < v(R).

=1

This result is geometrically obvious, but a formal proof seems to require a fuller
discussion of the volume function on elementary geometrical sets, which is included
in the theory of valuations in convex geometry. We omit the details.
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PROPOSITION 2.30. If R is an oblique rectangle, then gwen any € > 0 there is
a collection of parallel rectangles {R; : i € N} that covers R and satisfies

> w(Ri) <v(R) +e.

i=1
PROOF. Let S be an oblique rectangle that contains R in its interior such that
v(S) < v(R) +e.

Then, from Proposition 220 we may decompose the interior of S into an almost
disjoint union of parallel rectangles

i=1

It follows from the previous lemma that for every NV € N

Zv <v§

i=1

which implies that

oo

Y o(Ri) < v(8) < o(R) + .

=1

Moreover, the collection {R;} covers R since its union is S°, which contains R. [J

Conversely, by reversing the roles of the axes, we see that if R is a parallel
rectangle and € > 0, then there is a cover of R by oblique rectangles {R; : i € N}
such that

(2.18) iv(f%l) <v(R) +e.

i=1

THEOREM 2.31. If E C R™ and @ : R™ — R"™ is an orthogonal transformation,

then
p(QE) = p*(E),

and E is Lebesgue measurable if an only if QF is Lebesgue measurable.

PROOF. Let E = QE. Given ¢ > 0 there is a cover of E by parallel rectangles
{R; : i € N} such that

> vk (B)+35

i=1
From (ZI8), for each i € N we can choose a cover {R;; : j € N} of R; by oblique

rectangles such that
= - €
ZU(RM) S U(RZ) + W
i=1
Then {R” : 4,7 € N} is a countable cover of E by oblique rectangles, and

oo

Z Ri; SZ % M*(E)"’E-

i,j=1
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If R j = QTR, j, then {R;; : j € N} is a cover of E by parallel rectangles, so

pi(E) < Y v(Rij).

i,j=1

Moreover, since @ is orthogonal, we have v(R; ;) = v(R; ;). It follows that

4,j=1 5,5=1

and since € > 0 is arbitrary, we conclude that

p(E) < p*(E).

By applying the same argument to the inverse mapping £ = QTE’, we get the
reverse inequality, and it follows that p*(F) = p*(E).
Since p* is invariant under @, the Carathéodory criterion for measurability is

invariant, and E is measurable if and only if QFE is measurable. O

It follows from Theorem[2.3Tthat Lebesgue measure is invariant under rotations
and reflections[] Since it is also invariant under translations, Lebesgue measure is
invariant under all isometries of R™.

Next, we consider the effect of dilations on Lebesgue measure. Arbitrary linear
maps may then be analyzed by decomposing them into rotations and dilations.

PROPOSITION 2.32. Suppose that A : R™ — R™ is the linear transformation
(2.19) A (21,29, . .., 20) = (A1, A2Za, ..., Apy)
where the \; > 0 are positive constants. Then
i (AE) = (det A)u* (E),
and E is Lebesque measurable if and only if AE is Lebesque measurable.

PrOOF. The diagonal map A does not change the orientation of a rectan-
gle, so it maps a cover of E by parallel rectangles to a cover of AE by paral-
lel rectangles, and conversely. Moreover, A multiplies the volume of a rectangle
by det A = A1...\,, so it immediate from the definition of outer measure that
w*(AE) = (det A)p*(E), and E satisfies the Carathéodory criterion for measura-
bility if and only if AF does. (|

THEOREM 2.33. Suppose that T : R™ — R"™ is a linear transformation and
E CR™ Then

p(TE) = |det T| " (E),
and TE is Lebesque measurable if E is measurable

Proor. If T is singular, then its range is a lower-dimensional subspace of R™

which has Lebesgue measure zero, and its determinant is zero, so the result holdsﬁ
We therefore assume that T is nonsingular.

4Unlike differential volume forms, Lebesgue measure does not depend on the orientation of
R™; such measures are sometimes referred to as densities in differential geometry.

5In this case TE, is always Lebesgue measurable, with measure zero, even if E is not
measurable.
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In that case, according to the polar decomposition, the map 7" may be written
as a composition

T=QU

of a positive definite, symmetric map U = vVTTT and an orthogonal map Q. Any
positive-definite, symmetric map U may be diagonalized by an orthogonal map O
to get

U=0"A0

where A : R® — R” has the form (2I9)). From Theorem 23] orthogonal mappings
leave the Lebesgue measure of a set invariant, so from Proposition [2.32)

p(TE) = p*(AE) = (det A)u” (E).

Since | det Q| = 1 for any orthogonal map @, we have det A = | det T'|, and it follows
that p*(TE) = |det T| u*(E).

Finally, it is straightforward to see that T'F is measurable if E is measurable.

(I

2.9. Lebesgue-Stieltjes measures

We briefly consider a generalization of one-dimensional Lebesgue measure,
called Lebesgue-Stieltjes measures on R. These measures are obtained from an
increasing, right-continuous function F': R — R, and assign to a half-open interval
(a,b] the measure

pr ((a,0]) = F(b) — F(a).
The use of half-open intervals is significant here because a Lebesgue-Stieltjes mea-
sure may assign nonzero measure to a single point. Thus, unlike Lebesgue measure,
we need not have prp([a,b]) = pr((a,b]). Half-open intervals are also convenient
because the complement of a half-open interval is a finite union of (possibly infi-
nite) half-open intervals of the same type. Thus, the collection of finite unions of
half-open intervals forms an algebra.

The right-continuity of F' is consistent with the use of intervals that are half-
open at the left, since

5

Il
-

(a,a+1/i] = @,

so, from ([2), if F is to define a measure we need
lim pp ((a,a+1/i]) =0
1—> 00

or

lim [F(a+1/i) — F(a)] = lim F(z)— F(a) =0.

i—00 r—at

Conversely, as we state in the next theorem, any such function F' defines a Borel
measure on R.

THEOREM 2.34. Suppose that F : R — R is an increasing, right-continuous
function. Then there is a unique Borel measure up : B(R) — [0, 00] such that

pr ((a,0]) = F(b) — F(a)

for every a < b.
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The construction of pp is similar to the construction of Lebesgue measure on
R™. We define an outer measure p} : P(R) — [0, 00] by

pp(E) = inf {Z [F(bi) — F(as)] : E C Uil(aivbi]} ;
i=1
and restrict puj to its Carathéodory measurable sets, which include the Borel sets.
See e.g. Section 1.5 of Folland [4] for a detailed proof.
The following examples illustrate the three basic types of Lebesgue-Stieltjes
measures.

EXAMPLE 2.35. If F(x) = x, then up is Lebesgue measure on R with
pr ((a, b)) =b—a.
EXAMPLE 2.36. If

1 ifxz >0,
F(””)_{ 0 ifx<0,
then pp is the J-measure supported at 0,
1 if0e A,
“F(A)—{ 0 if0¢ A

ExXAMPLE 2.37. If F': R — R is the Cantor function, then pp assigns measure
one to the Cantor set, which has Lebesgue measure zero, and measure zero to its
complement. Despite the fact that up is supported on a set of Lebesgue measure
zero, the up-measure of any countable set is zero.






CHAPTER 3

Measurable functions

Measurable functions in measure theory are analogous to continuous functions
in topology. A continuous function pulls back open sets to open sets, while a
measurable function pulls back measurable sets to measurable sets.

3.1. Measurability

Most of the theory of measurable functions and integration does not depend
on the specific features of the measure space on which the functions are defined, so
we consider general spaces, although one should keep in mind the case of functions
defined on R or R™ equipped with Lebesgue measure.

DErFINITION 3.1. Let (X, A) and (Y,B) be measurable spaces. A function
f:X — Y is measurable if f~(B) € A for every B € B.

Note that the measurability of a function depends only on the o-algebras; it is
not necessary that any measures are defined.

In order to show that a function is measurable, it is sufficient to check the
measurability of the inverse images of sets that generate the o-algebra on the target
space.

PROPOSITION 3.2. Suppose that (X, A) and (Y,B) are measurable spaces and
B = 0(G) is generated by a family G C P(Y). Then f: X — Y is measurable if
and only if
UG e A for every G € G.

PROOF. Set operations are natural under pull-backs, meaning that

FTIYAB) =X\ f71(B)

f71 <U Bl) = U f71 (Bl)v fil <ﬂ Bz) = ﬂ f71 (Bl) .

i=1 i=1

and

It follows that

M={BcCY:f1(B)e A}
is a o-algebra on Y. By assumption, M D G and therefore M D o(G) = B, which
implies that f is measurable. ([

It is worth noting the indirect nature of the proof of containment of o-algebras
in the previous proposition; this is required because we typically cannot use an
explicit representation of sets in a o-algebra. For example, the proof does not
characterize M, which may be strictly larger than B.

If the target space Y is a topological space, then we always equip it with the
Borel o-algebra B(Y) generated by the open sets (unless stated explicitly otherwise).

33
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In that case, it follows from Proposition that f : X — Y is measurable if and
only if f71(G) € A is a measurable subset of X for every set G that is open in Y. In
particular, every continuous function between topological spaces that are equipped
with their Borel o-algebras is measurable. The class of measurable function is,
however, typically much larger than the class of continuous functions, since we only
require that the inverse image of an open set is Borel; it need not be open.

3.2. Real-valued functions
We specialize to the case of real-valued functions
f: X =R
or extended real-valued functions
f: X >R

We will consider one case or the other as convenient, and comment on any differ-
ences. A positive extended real-valued function is a function

f:X —=]0,00].

Note that we allow a _positive function to take the value zero. _
We equip R and R with their Borel o-algebras B(R) and B(R). A Borel subset
of R has one of the forms

B, B U {0}, BU{—o0}, BU{—00,00}

where B is a Borel subset of R. As Example shows, sets that are Lebesgue
measurable but not Borel measurable need not be well-behaved under the inverse
of even a monotone function, which helps explain why we do not include them in
the range o-algebra on R or R.

By contrast, when the domain of a function is a measure space it is often
convenient to use a complete space. For example, if the domain is R™ we typically
equip it with the Lebesgue o-algebra, although if completeness is not required
we may use the Borel o-algebra. With this understanding, we get the following
definitions. We state them for real-valued functions; the definitions for extended
real-valued functions are completely analogous

DEFINITION 3.3. If (X, A) is a measurable space, then f : X — R is measurable
if f~Y(B) € A for every Borel set B € B(R). A function f: R® — R is Lebesgue
measurable if f~!(B) is a Lebesgue measurable subset of R™ for every Borel subset
B of R, and it is Borel measurable if f~!(B) is a Borel measurable subset of R"
for every Borel subset B of R

This definition ensures that continuous functions f : R®™ — R are Borel measur-
able and functions that are equal a.e. to Borel measurable functions are Lebesgue
measurable. If f : R — R is Borel measurable and ¢g : R® — R is Lebesgue (or
Borel) measurable, then the composition f o g is Lebesgue (or Borel) measurable
since

(fog) " (B)=g7" (f71(B)).
Note that if f is Lebesgue measurable, then f o g need not be measurable since
f7Y(B) need not be Borel even if B is Borel.

We can give more easily verifiable conditions for measurability in terms of
generating families for Borel sets.
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PROPOSITION 3.4. The Borel o-algebra on R is generated by any of the follow-
ing collections of intervals

{(=00,b) : b e R}, {(—o0,b]:beR}, {(a,00):aeR}, {[a,0):a€R}.

PROOF. The o-algebra generated by intervals of the form (—oo, b) is contained
in the Borel o-algebra B(R) since the intervals are open sets. Conversely, the
o-algebra contains complementary closed intervals of the form [a,00), half-open
intersections [a, b), and countable intersections

o0

[a,b] = ﬂ[a,b+%).

n=1

From Proposition 220, the Borel o-algebra B(R) is generated by the collection of
closed rectangles [a, b], so

o ({(—o0,b) : b € R}) = B(R).
The proof for the other collections is similar. O

The properties given in the following proposition are sometimes taken as the
definition of a measurable function.

PROPOSITION 3.5. If (X,.A) is a measurable space, then f : X — R is measur-
able if and only if one of the following conditions holds:

{reX:flx)<ble A  foreverybeR;
{reX:flx)<ble A  foreverybeR;
{reX:f(x)>a}te A  for everya € R;
{reX:f(x)>a}e A  foreveryacR.

PRrROOF. Note that, for example,

{zeX: f(z) <b}=f"((—o0,b))
and the result follows immediately from Propositions and [3.4 O

If any one of these equivalent conditions holds, then f~1(B) € A for every set
B € B(R). We will often use a shorthand notation for sets, such as

{f<bt={xeX: f(zx) <b}.

The Borel o-algebra on R is generated by intervals of the form [—oco, b), [—00, b],
(a,0], or [a,c0] where a,b € R, and exactly the same conditions as the ones
in Proposition imply the measurability of an extended real-valued functions
f: X — R. In that case, we can allow a,b € R to be extended real numbers
in Proposition [3.5] but it is not necessary to do so in order to imply that f is
measurable.

Measurability is well-behaved with respect to algebraic operations.

ProrosITION 3.6. If f,g : X — R are real-valued measurable functions and
k € R, then

kf, f+g, fg, flg

are measurable functions, where we assume that g # 0 in the case of f/g.
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PRrOOF. If £ > 0, then

{kf <b} ={f <b/k}

so kf is measurable, and similarly if k¥ < 0 or £ = 0. We have

{f+g<vt= U {<anig<r}

q+r<b;q,reQ

so f + g is measurable. The function f? is measurable since if b > 0
{f2<b}={—\/5<f<\/5}.
It follows that

1
fo=5[(f+9*-f-¢’
is measurable. Finally, if g # 0
{1/b< g <0} if b <0,
{1/g<b} =< {-00<g<0} if b=0,

{—0o<g<0}U{l/b<g<oo} ifbdb>0,
so 1/g is measurable and therefore f/g is measurable. O
An analogous result applies to extended real-valued functions provided that
they are well-defined. For example, f + g is measurable provided that f(x), g(x)

are not simultaneously equal to oo and —oo, and fg is is measurable provided that
f(z), g(x) are not simultaneously equal to 0 and +oc.

PROPOSITION 3.7. If f,g : X — R are extended real-valued measurable func-
tions, then

[fl, max(f,g),  min(f,g)

are measurable functions.
ProOOF. We have
{max(f,g) <b} ={f <b}n{g <0},
{min(f, g) <0} = {f <b}U{g < b},
and |f| = max(f,0) — min(f,0), from which the result follows. O

3.3. Pointwise convergence

Crucially, measurability is preserved by limiting operations on sequences of
functions. Operations in the following theorem are understood in a pointwise sense;
for example,

(sup 12 ) (@) = sup 11,00}
neN neN

THEOREM 3.8. If {f, : n € N} is a sequence of measurable functions f, : X —
R, then

sup fn, inf f,, limsup f,, liminf f,
neN neN n—00 n—00

are measurable extended real-valued functions on X.
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ProOOF. We have for every b € R that

{:ggfn < b} = Ql {fn <},

o0
{;ggfn < b} = {r<n}
n=1
so the supremum and infimum are measurable Moreover, since

limsup f,, = inf sup f,
n— 00 neN k>n

liminf f, = sup inf fx
n— 00 neNk>n

it follows that the limsup and liminf are measurable. O

Perhaps the most important way in which new functions arise from old ones is
by pointwise convergence.

DEFINITION 3.9. A sequence {f, : n € N} of functions f, : X — R converges
pointwise to a function f: X — R if f,(x) — f(x) as n — oo for every z € X.

Pointwise convergence preserves measurability (unlike continuity, for example).
This fact explains why the measurable functions form a sufficiently large class for
the needs of analysis.

THEOREM 3.10. If {f, : n € N} is a sequence of measurable functions f, :
X — R and f, — f pointwise as n — 0o, then f: X — R is measurable.

Proor. If f,, — f pointwise, then
f =limsup f,, = liminf f,
n— o0 n—00

so the result follows from the previous proposition. (I

3.4. Simple functions

The characteristic function (or indicator function) of a subset E C X is the
function xg : X — R defined by

(z) = 1 ifrekE,
XEW) =\ 0 ifz ¢ E.

The function x g is measurable if and only if F is a measurable set.

DEFINITION 3.11. A simple function ¢ : X — R on a measurable space (X, .A)
is a function of the form

N
(3.1) $(x) = cnxp, (x)
n=1

where ¢1,...,cy € Rand Eq,...,Exy € A.

Note that, according to this definition, a simple function is measurable. The
representation of ¢ in ([B.I]) is not unique; we call it a standard representation if the
constants ¢, are distinct and the sets F, are disjoint.
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THEOREM 3.12. If f : X — [0, 00] is a positive measurable function, then there
is a monotone increasing sequence of positive simple functions ¢, : X — [0,00)
with g1 < ¢o < -+ < @y < ... such that ¢, — [ pointwise as n — oo. If f is
bounded, then ¢, — f uniformly.

PRrOOF. For each n € N, we divide the interval [0,2"] in the range of f into
227 subintervals of width 277,

Iin = (K277, (b +1)27"], k=0,1,...,22" -1,
let J, = (2", 00| be the remaining part of the range, and define
Ek,n = fﬁl(Ik,n)u Fn = fﬁl(Jn)

Then the sequence of simple functions given by

22n 1
bn= > k2 "Xm,, +2"XF,
k=0
has the required properties. (Il

In defining the Lebesgue integral of a measurable function, we will approximate
it by simple functions. By contrast, in defining the Riemann integral of a function
f : [a,b] = R, we partition the domain [a, b] into subintervals and approximate f by
step functions that are constant on these subintervals. This difference is sometime
expressed by saying that in the Lebesgue integral we partition the range, and in
the Riemann integral we partition the domain.

3.5. Properties that hold almost everywhere

Often, we want to consider functions or limits which are defined outside a set of
measure zero. In that case, it is convenient to deal with complete measure spaces.

PROPOSITION 3.13. Let (X, A, 1) be a complete measure space and f,g: X —
R. If f = g pointwise p-a.e. and f is measurable, then g is measurable.

PROOF. Suppose that f = g on N¢ where N is a set of measure zero. Then
{g<bf=({f <b}NN)U{g <b}NN).

Each of these sets is measurable: {f < b} is measurable since f is measurable; and
{g < b} N N is measurable since it is a subset of a set of measure zero and X is
complete. (I

The completeness of X is essential in this proposition. For example, if X is not
complete and E C N is a non-measurable subset of a set N of measure zero, then
the functions 0 and xg are equal almost everywhere, but 0 is measurable and x g
is not.

PROPOSITION 3.14. Let (X, A, 1) be a complete measure space. If {f, : n € N}
is a sequence of measurable functions f, : X — R and f, — f as n — oo pointwise
w-a.e., then f is measurable.

PROOF. Since f, is measurable, ¢ = limsup,,_,, fn is measurable and f = ¢
pointwise a.e., so the result follows from the previous proposition. (I



CHAPTER 4

Integration

In this Chapter, we define the integral of real-valued functions on an arbitrary
measure space and derive some of its basic properties. We refer to this integral as
the Lebesgue integral, whether or not the domain of the functions is subset of R™
equipped with Lebesgue measure. The Lebesgue integral applies to a much wider
class of functions than the Riemann integral and is better behaved with respect to
pointwise convergence. We carry out the definition in three steps: first for positive
simple functions, then for positive measurable functions, and finally for extended
real-valued measurable functions.

4.1. Simple functions

Suppose that (X, A, i) is a measure space.

DEFINITION 4.1. If ¢ : X — [0, 00) is a positive simple function, given by

N
¢=> cixe,
i=1

where ¢; > 0 and E; € A, then the integral of ¢ with respect to pu is

N
(4.1) [odn=3cnE).
=1

In (@IJ), we use the convention that if ¢; = 0 and p(E;) = oo, then 0 - co = 0,
meaning that the integral of 0 over a set of measure oo is equal to 0. The integral
may take the value oo (if ¢; > 0 and p(E;) = oo for some 1 < ¢ < N). One
can verify that the value of the integral in ([I]) is independent of how the simple
function is represented as a linear combination of characteristic functions.

EXAMPLE 4.2. The characteristic function xg : R — R of the rationals is not
Riemann integrable on any compact interval of non-zero length, but it is Lebesgue
integrable with

/XQdu:1~u(Q):0-

The integral of simple functions has the usual properties of an integral. In
particular, it is linear, positive, and monotone.

39



40 4. INTEGRATION

PROPOSITION 4.3. If ¢,¢ : X — [0,00) are positive simple functions on a
measure space X, then:

/kqﬁdu:k/gbdu if k € [0, 00);

Jorwrdn=[odu+ [van
0< [odns [vdn  iozosw.
PROOF. These follow immediately from the definition. ]

4.2. Positive functions

We define the integral of a measurable function by splitting it into positive and
negative parts, so we begin by defining the integral of a positive function.

DEFINITION 4.4. If f: X — [0,00] is a positive, measurable, extended real-
valued function on a measure space X, then

/fdu:sup{/qﬁduzog(bgf,¢simple}.

A positive function f: X — [0, 00] is integrable if it is measurable and

/fd,u<oo

In this definition, we approximate the function f from below by simple func-
tions. In contrast with the definition of the Riemann integral, it is not necessary to
approximate a measurable function from both above and below in order to define
its integral.

If A C X is a measurable set and f : X — [0, 00] is measurable, we define

/Afdu=/fx,4du-

Unlike the Riemann integral, where the definition of the integral over non-rectangular
subsets of R? already presents problems, it is trivial to define the Lebesgue integral
over arbitrary measurable subsets of a set on which it is already defined.

The following properties are an immediate consequence of the definition and
the corresponding properties of simple functions.

PROPOSITION 4.5. If f,g: X — [0,00] are positive, measurable, extended real-
valued function on a measure space X, then:

/kfdu:k/fdu if k € [0,00);
og/fdus/gdu if0<f<g

The integral is also linear, but this is not immediately obvious from the defi-
nition and it depends on the measurability of the functions. To show the linearity,
we will first derive one of the fundamental convergence theorem for the Lebesgue
integral, the monotone convergence theorem. We discuss this theorem and its ap-
plications in greater detail in Section
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THEOREM 4.6 (Monotone Convergence Theorem). If {f, : n € N} is a mono-
tone increasing sequence

0<fi<fo< - <fn<fo1 <ot

of positive, measurable, extended real-valued functions f, : X — [0, 00] and
f = lim fn7
n—oo
then
lim [ fndp= /f du.
n—oo

PROOF. The pointwise limit f : X — [0, 00] exists since the sequence {f,}
is increasing. Moreover, by the monotonicity of the integral, the integrals are

increasing, and
[haus [fuidus [ 1.

so the limit of the integrals exists, and
i [ fodus [
n—oo

To prove the reverse inequality, let ¢ : X — [0,00) be a simple function with
0<¢p<f. Fix0<t<1. Then

Ap={z € X : fu(x) > té(z)}

is an increasing sequence of measurable sets A1 C Ay C -+ C A, C ... whose
union is X. It follows that

(4.2) /fnduz/ fnduzt/ by
A, An
Moreover, if
N
¢ = Z CiXE;
=1

we have from the monotonicity of 4 in Proposition [L.12] that

N N
[ o= cntBinan) » Y cn(:) = [ od
An i=1 i=1

as n — oo. Taking the limit as n — oo in (L2), we therefore get
lim [ fn,dp > t/(bd,u.
n—oo
Since 0 < ¢t < 1 is arbitrary, we conclude that
i [ fudu> [odn
n—00

and since ¢ < f is an arbitrary simple function, we get by taking the supremum
over ¢ that

lim fnduz/fdu-
n—oo

This proves the theorem. O
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In particular, this theorem implies that we can obtain the integral of a positive
measurable function f as a limit of integrals of an increasing sequence of simple
functions, not just as a supremum over all simple functions dominated by f as in
Definition {4l As shown in Theorem [312] such a sequence of simple functions
always exists.

PROPOSITION 4.7. If f,g: X — [0,00] are positive, measurable functions on a

measure space X, then
/(f+9)du=/fdu+/gdu.

PROOF. Let {¢, : n € N} and {9, : n € N} be increasing sequences of positive
simple functions such that ¢, — f and v,, — g pointwise as n — oo. Then ¢, + ¥y,
is an increasing sequence of positive simple functions such that ¢, + v, — f + g.
It follows from the monotone convergence theorem (Theorem ) and the linearity
of the integral on simple functions that

[t +rdu=tim_ [ o+ ) du

= ([ enau [on)

= lim [ ¢, du+ lim /wn dp
n—oo n—oo

=/fdu+/gdu,

which proves the result. ([l

4.3. Measurable functions

If f: X — R is an extended real-valued function, we define the positive and
negative parts f*, f~ : X — [0, 00] of f by
(4.3) f=f"=f.  ff=max{f,0}, [~ =max{-f 0}
For this decomposition,
fl=f"+7

Note that f is measurable if and only if fT and f~ are measurable.

DEFINITION 4.8. If f : X — R is a measurable function, then

/fdu=/f+du—/f’du,

provided that at least one of the integrals [ f du, [ f~ dp is finite. The function
[ is integrable if both [ f* du, [ f~ du are finite, which is the case if and only if

/Ifldu<<>0-

Note that, according to Definition [£.8] the integral may take the values —oo or
o0, but it is not defined if both [ f*du, [ f~ dp are infinite. Thus, although the
integral of a positive measurable function always exists as an extended real number,
the integral of a general, non-integrable real-valued measurable function may not
exist.
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This Lebesgue integral has all the usual properties of an integral. We restrict
attention to integrable functions to avoid undefined expressions involving extended
real numbers such as co — co.

PRrROPOSITION 4.9. If f,g : X — R are integrable functions, then:

/kfdu:k/fdu ifk € R;

/(f+g) du=/fdu+/gdu;

/fduﬁ/gdu if f <g;

‘/fdu‘ < [1s1an

PrOOF. These results follow by writing functions into their positive and neg-
ative parts, as in (3], and using the results for positive functions.
If f=f"—f and k>0, then (kf)" =kfT and (kf)” =kf~, so

/kfdu:/kardu—/kf*du:k/erdu—k/f*du:k/fdu.

Similarly, (—f)* = f~ and (—f)™ = fT, so

Jenau= [ 5 au= [ ran=- [ san

If h=f+gand
f=f=f. g9g=g"-9°, h=ht-h"
are the decompositions of f, g, h into their positive and negative parts, then
ht—h™ =f"—f +g"—g".
It need not be true that A™ = f + g™, but we have
fTHg +ht=fr gt +n.

The linearity of the integral on positive functions gives

/f’du+/g*du+/h*du:/f+du+/g+d,u+/h’du,

which implies that

/h+du—/h‘du=/f*du—/f‘dwr/g*du—/g‘dm

or [(f+g)du= [ fdu+ [gdu.
It follows that if f < g, then

OS/(g—f)d/L:/gdu—/fdm

so [ fdu < [gdu. The last result is then a consequence of the previous results
and —|f| < f <[f]. O

Let us give two basic examples of the Lebesgue integral.
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EXAMPLE 4.10. Suppose that X = N and v : P(N) — [0,00] is counting
measure on N. If f: N — R and f(n) = z,, then

/Nfdl/—;xn,

where the integral is finite if and only if the series is absolutely convergent. Thus,
the theory of absolutely convergent series is a special case of the Lebesgue integral.
Note that a conditionally convergent series, such as the alternating harmonic series,
does not correspond to a Lebesgue integral, since both its positive and negative
parts diverge.

EXAMPLE 4.11. Suppose that X = [a, b] is a compact interval and u : L([a, b]) —
R is Lesbegue measure on [a,b]. We note in Section g that any Riemann inte-
grable function f : [a,b] — R is integrable with respect to Lebesgue measure u, and
its Riemann integral is equal to the Lebesgue integral,

b
[ f@do= [ tan
a [a,b]

Thus, all of the usual integrals from elementary calculus remain valid for the
Lebesgue integral on R. We will write an integral with respect to Lebesgue measure

on R, or R, as
/fdw.

Even though the class of Lebesgue integrable functions on an interval is wider
than the class of Riemann integrable functions, some improper Riemann integrals
may exist even though the Lebesegue integral does not.

EXAMPLE 4.12. The integral

/1 (1 1 1)
—sin—+cos— | dz
o \z =z x
is not defined as a Lebesgue integral, although the improper Riemann integral
1 1
1 1 1 d 1
lim <—sin— —|—cos—> dr = lim — [xcos —] dx = cos1
e—0+ Jo \z T T e—0t J. dx T
exists.
EXAMPLE 4.13. The integral
1
1
/ —dz
1z

is not defined as a Lebesgue integral, although the principal value integral

1 —e€ 1
1 1 1
p.v./ —dx = lim {/ —dx—i—/ —dw}zo
1z e—=07F 1z e

exists. Note, however, that the Lebesgue integrals

1 0
1 1
/—d:vzoo, / —dr = —00
0 X _1:17

are well-defined as extended real numbers.
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The inability of the Lebesgue integral to deal directly with the cancelation
between large positive and negative parts in oscillatory or singular integrals, such
as the ones in the previous examples, is sometimes viewed as a defect (although the
integrals above can still be defined as an appropriate limit of Lebesgue integrals).
Other definitions of the integral such as the Henstock-Kurzweil integral, which is a
generalization of the Riemann integral, avoid this defect but they have not proved
to be as useful as the Lebesgue integral. Similar issues arise in connection with
Feynman path integrals in quantum theory, where one would like to define the
integral of highly oscillatory functionals on an infinite-dimensional function-space.

4.4. Absolute continuity

The following results show that a function with finite integral is finite a.e. and
that the integral depends only on the pointwise a.e. values of a function.

PROPOSITION 4.14. If f : X — R is an integrable function, meaning that
J1fldp < oo, then f is finite p-a.e. on X.

PROOF. We may assume that f is positive without loss of generality. Suppose
that
E={zeX:f=o00}
has nonzero measure. Then for any ¢t > 0, we have f > txg, so
/fdu > /th dp = tu(E),
which implies that [ fdu = oc. O

PROPOSITION 4.15. Suppose that f : X — R is an extended real-valued mea-
surable function. Then [ |f|dp =0 if and only if f =0 p-a.e.

PROOF. By replacing f with |f|, we can assume that f is positive without loss
of generality. Suppose that f =0 a.e. If 0 < ¢ < f is a simple function,

N
¢= cixg,
i=1

then ¢ =0 a.e., so ¢; = 0 unless u(E;) = 0. It follows that

N
[odn=3" e ~o
=1

and Definition F.4] implies that [ fdu = 0.
Conversely, suppose that [ fdu = 0. For n € N, let

E,={zeX: f(z)>1/n}.
Then 0 < (1/n)xg, < f, so that

1 1
OS—u(En):/—xEnduS/fdu:(),
n n

and hence u(FE,) = 0. Now observe that

{:veX:f(x)>O}:UEn,

n=1

so it follows from the countable additivity of p that f =0 a.e. O
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In particular, it follows that if f : X — R is any measurable function, then

(4.4) /Afdu =0 if u(A) =0.

For integrable functions we can strengthen the previous result to get the fol-
lowing property, which is called the absolute continuity of the integral.

PROPOSITION 4.16. Suppose that f : X — R is an integrable function, meaning
that [|f|du < oo. Then, given any € > 0, there exists § > 0 such that

(4.5) 0< / fldu < e
A
whenever A is a measurable set with pu(A) < 4.

PROOF. Again, we can assume that f is positive. For n € N, define f, : X —
[0, 0] by

[ n if f(x) >mn,
fn(@) _{ flx) i0< f(z) <n.

Then {f,} is an increasing sequence of positive measurable functions that converges
pointwise to f. We estimate the integral of f over A as follows:

fdp= [ (f = fa)dp+ [ fodp
fira=, /.
< /X (f = fu) d + nps(A).

By the monotone convergence theorem,

/andu—>‘/xfdu<oo

as n — 0o. Therefore, given € > 0, we can choose n such that

0< [(r=rdu<s,

and then choose
€

If u(A) < 6, we get (@A), which proves the result. O
Proposition .16l may fail if f is not integrable.

EXAMPLE 4.17. Define v : B((0,1)) — [0, 0] by

v(A) = /Aédx,

where the integral is taken with respect to Lebesgue measure p. Then v(A4) = 0 if
u(A) =0, but (@A) does not hold.

There is a converse to this theorem concerning the representation of absolutely
continuous measures as integrals (the Radon-Nikodym theorem, stated in Theo-

rem [6.27]).
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4.5. Convergence theorems

One of the most basic questions in integration theory is the following: If f,, — f
pointwise, when can one say that

(4.6) /fndu%/fdu?

The Riemann integral is not sufficiently general to permit a satisfactory answer to
this question.

Perhaps the simplest condition that guarantees the convergence of the integrals
is that the functions f,, : X — R converge uniformly to f : X — R and X has finite
measure. In that case

/fndu—/fdu} < [15a =11 du < uCX) 500 11— 71 0

asn — 0o0. The assumption of uniform convergence is too strong for many purposes,
and the Lebesgue integral allows the formulation of simple and widely applicable
theorems for the convergence of integrals. The most important of these are the
monotone convergence theorem (Theorem [.6) and the Lebesgue dominated con-
vergence theorem (Theorem [£24)). The utility of these results accounts, in large
part, for the success of the Lebesgue integral.

Some conditions on the functions f, in (L8] are, however, necessary to ensure
the convergence of the integrals, as can be seen from very simple examples. Roughly
speaking, the convergence may fail because ‘mass’ can leak out to infinity in the
limit.

EXAMPLE 4.18. Define f, : R — R by

_f n if0<z<1/n,
falz) = { 0 otherwise.

Then f,, — 0 as n — oo pointwise on R, but
/fndle for every n € N.

By modifying this example, and the following ones, we can obtain a sequence f,, that
converges pointwise to zero but whose integrals converge to infinity; for example

n? if0<z<1/n,
fulz) = { 0  otherwise.

EXAMPLE 4.19. Define f,, : R — R by

[ 1/n fO0<x<mn,
Fulz) = { 0 otherwise.

Then f,, — 0 as n — oo pointwise on R, and even uniformly, but
/fndle for every n € N.

EXAMPLE 4.20. Define f,, : R — R by

Fulz) = 1 ifn<z<n+l,
"1 0 otherwise.
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Then f,, — 0 as n — oo pointwise on R, but
/fndle for every n € N.

The monotone convergence theorem implies that a similar failure of convergence
of the integrals cannot occur in an increasing sequence of functions, even if the
convergence is not uniform or the domain space does not have finite measure. Note
that the monotone convergence theorem does not hold for the Riemann integral;
indeed, the pointwise limit of a monotone increasing, bounded sequence of Riemann
integrable functions need not even be Riemann integrable.

EXAMPLE 4.21. Let {g¢; : i € N} be an enumeration of the rational numbers in
the interval [0, 1], and define f,, : [0,1] — [0, 00) by

| 1 ifx=gq; forsomel <i<n,
falw) = { 0 otherwise.

Then {f,} is a monotone increasing sequence of bounded, positive, Riemann in-
tegrable functions, each of which has zero integral. Nevertheless, as n — oo the
sequence converges pointwise to the characteristic function of the rationals in [0, 1],
which is not Riemann integrable.

A useful generalization of the monotone convergence theorem is the following
result, called Fatou’s lemma.

THEOREM 4.22. Suppose that {f, : n € N} is sequence of positive measurable
functions fn, : X — [0,00]. Then